Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT students living on 'Mars' via Utah

Last week, two MIT students began living, working and communicating with the outside world as if they were on a mission to Mars. Whenever they go outside their small, round habitat where eight people are spending a two-week "mission," they don spacesuits and pass through an airlock. When they send e-mail, it takes 20 minutes before the recipient can see it-the time it takes for radio waves to travel to and from the red planet.

They're not really on Mars, of course-human missions there are not yet even in NASA's long-term schedule and are not expected to take place for at least two decades. So, in order to begin understanding the logistical, mechanical, scientific and psychological issues that a real crew of Mars explorers will someday face, teams have been practicing the details of Mars exploration in several Mars-base simulators in some of Earth's most Mars-like places. The most heavily used simulation is the Mars Society Desert Research Station, near Hanksville, Utah, which was built in 2002 by the Mars Society.

Engineering graduate students Zahra Khan and Phillip Cunio, from the Department of Aeronautics and Astronautics, began their stay at the Utah facility on Sunday, Feb. 17. Cunio is working on a project to develop a "smart" carrier to be used for research fieldwork in remote expeditions such as planetary exploration. The footlocker-sized container and its contents are fitted with radio-frequency ID tags, so that it constantly keeps track of its contents and can alert people if supplies are about to run out or if an item has been misplaced. Running out of supplies is not just an inconvenience-on a faraway planetary surface it could be a life-or-death issue.

Khan's job was concentrating on the logistics of making exploratory trips through the desert to carry out geological and biological research. The team uses all-terrain vehicles to travel around while wearing their simulated spacesuits and then takes soil samples and conducts other tests at various locations. Halfway through the planned two-week mission, Khan cut her stay short when she was unexpectedly called to Amsterdam for a job interview with the European Space Agency.

Although part of the mission's purpose is to find out about practical issues in working in difficult circumstances, the research itself is also very real. They have been looking for organisms that live in the hostile, dry and salty desert environment, both to develop techniques for conducting such biological research and to learn about how organisms survive in these somewhat Mars-like conditions.

Both Khan and Cunio would like to be involved in real Mars missions someday. Khan's research is on entry, descent and landing systems for human missions to Mars. These will require much gentler, more-controlled descents than past missions, such as the Mars rovers that hit the ground at high speed shielded by airbags and then bounced for several minutes before coming to a stop.

Khan says she would like to go to Mars herself, but thinks that with the slow progress of NASA's plans in that direction, "the odds may not be very good. I think it would be a good idea to send younger people," and by the time such missions take place that may leave her out.

"I'm an advocate of one-way trips to Mars," she says, because the logistics of such trips would be far easier without the requirement for all the fuel needed for a return. For a given spacecraft, she says, you could send six people on a two-way mission or 24 people for a one-way trip. "If you're going to go there, you might as well not waste the resources."

Cunio's research studies the design of self-sustaining life-support systems for Mars colonists, as well as for missions to the moon or other destinations. "We're studying the commonalities in life support and environmental control systems," he says, so that planners don't have to start from scratch in planning missions to different places.

"We want to minimize the development costs and risks."

Anyone interested in following the progress of the Mars-like mission can observe the team in action by way of a set of web cams that display live images inside and outside the habitat, at Detailed daily reports on their activities can be found online at (click on "daily crew reports").

Cunio is also blogging about his experiences during the mission, mainly as a way of helping to inspire younger students to get interested in space exploration. His blog is at Cunio has made contact with several schools around the United States and Canada, and will participate in real-time question-and-answer sessions with some of the classes during the mission.

Written by David Chandler, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>