Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crystal bells stay silent as physicists look for dark matter

U.S. experiment retakes the lead in competitive race

Scientists of the Cryogenic Dark Matter Search experiment today announced that they have regained the lead in the worldwide race to find the particles that make up dark matter. The CDMS experiment, conducted a half-mile underground in a mine in Soudan, Minn., again sets the world’s best constraints on the properties of dark matter candidates.

“With our new result we are leapfrogging the competition,” said Blas Cabrera of Stanford University, co-spokesperson of the CDMS experiment, for which the Department of Energy’s Fermi National Accelerator Laboratory hosts the project management. “We have achieved the world’s most stringent limits on how often dark matter particles interact with ordinary matter and how heavy they are, in particular in the theoretically favored mass range of more than 40 times the proton mass. Our experiment is now sensitive enough to hear WIMPs even if they ring the ‘bells’ of our crystal germanium detector only twice a year. So far, we have heard nothing.”

WIMPs, or weakly interacting massive particles, are leading candidates for the building blocks of dark matter, which accounts for 85 percent of the entire mass of the universe. Hundreds of billions of WIMPs may have passed through your body as you read these sentences.

“We were disappointed about not seeing WIMPs this time. But the absence of background in our sample shows the power of our detectors as we enter into very interesting territory,” said CDMS co-spokesperson Bernard Sadoulet, of the University of California, Berkeley.

If they exist, WIMPs might interact with ordinary matter at rates similar to those of low-energy neutrinos, elusive subatomic particles discovered in 1956. But to account for all the dark matter in the universe and the gravitational pull it produces, WIMPs must have masses about a billion times larger than those of neutrinos. The CDMS collaboration found that if WIMPs have 100 times the mass of protons (about 100 GeV/c2) they collide with one kilogram of germanium less than a few times per year; otherwise, the CDMS experiment would have detected them.

“The nature of dark matter is one of the mysteries in particle physics and cosmology,” said Dr. Dennis Kovar, Acting Associate Director for High Energy Physics in the U.S. Department of Energy's Office of Science. “Congratulations to the CDMS collaboration for improved sensitivity and a new limit in the search for dark matter.”

The CDMS experiment is located in the Soudan Underground Laboratory, shielded from cosmic rays and other particles that could mimic the signals expected from dark matter particles. Scientists operate the ultrasensitive CDMS detectors under clean-room conditions at a temperature of about 40 millikelvin, close to absolute zero. Physicists expect that WIMPs, if they exist, travel right through ordinary matter, rarely leaving a trace. If WIMPs crossed the CDMS detector, occasionally one of the WIMPs would hit a germanium nucleus. Like a hammer hitting a bell, the collision would create vibrations of the detector’s crystal grid, which scientists could detect. Not having observed such signals, the CDMS experiment set limits on the properties of WIMPs.

“Observations made with telescopes have repeatedly shown that dark matter exists. It is the stuff that holds together all cosmic structures, including our own Milky Way. The observation of WIMPs would finally reveal the underlying nature of this dark matter, which plays such a crucial role in the formation of galaxies and the evolution of our universe,” said Joseph Dehmer, director of the Division of Physics for the National Science Foundation.

The discovery of WIMPs would require extensions to the theoretical framework known as the Standard Model of particles and their forces. On Feb. 22, the CDMS collaboration presented its result to the scientific community at the Eighth UCLA Dark Matter and Dark Energy symposium.

“This is a fantastic result,” said UCLA professor David Cline, organizer of the conference.

The CDMS result tests the viability of new theoretical concepts that have been proposed.

“Our results constrain theoretical models such as supersymmetry and models based on extra dimensions of space-time, which predict the existence of WIMPs,” said CDMS project manager Dan Bauer, of DOE’s Fermilab. “For WIMP masses expected from these theories, we are again the most sensitive in the world, retaking the lead from the Xenon 10 experiment at the Italian Gran Sasso laboratory. We will gain another factor of three in sensitivity by continuing to take more data with our detector in the Soudan laboratory until the end of 2008.”

A new phase of the CDMS experiment with 25 kilograms of germanium is planned for the SNOLAB facility in Canada.

“The 25-kilogram experiment has clear discovery potential,” said Fermilab Director Pier Oddone. “It covers a lot of the territory predicted by supersymmetric theories.”

The CDMS collaboration includes more than 50 scientists from 16 institutions and receives funding from the U.S. Department of Energy, the National Science Foundation, foreign funding agencies in Canada and Switzerland, and from member institutions.

Fermilab is a DOE Office of Science national laboratory operated under contract by the Fermi Research Alliance, LLC. The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the nation.

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering. NSF funds reach all 50 states through grants to more than 1,700 universities and institutions.

Additional information:

Background information:
CDMS home page:
Institutions participating in CDMS:
Brown University
California Institute of Technology
Case Western Reserve University
Fermi National Accelerator Laboratory
Lawrence Berkeley National Laboratory
Massachusetts Institute of Technology
Queens University
Santa Clara University
Stanford University
Syracuse University
University of California, Berkeley
University of California, Santa Barbara
University of Colorado Denver
University of Florida
University of Minnesota
University of Zurich

Kurt Riesselmann | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>



Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

More VideoLinks >>>