Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers demonstrate a new type of optical tweezer

26.02.2008
Microfabricated optical tweezer has the potential to make biological and microfluidic force measurements in integrated systems such as microfluidic chips

Researchers at the Harvard School of Engineering and Applied Sciences (SEAS) demonstrated a new type of optical tweezer with the potential to make biological and microfluidic force measurements in integrated systems such as microfluidic chips. The tweezer, consisting of a Fresnel Zone Plate microfabricated on a glass slide, has the ability to trap particles without the need for high performance objective lenses.

The device was designed, fabricated, and tested by postdoctoral fellow Ethan Schonbrun and undergraduate researcher Charles Rinzler under the direction of Assistant Professor of Electrical Engineering Ken Crozier (all are affiliated with SEAS). The team's results were published in the February 18th edition of Applied Physics Letters and the researchers have filed a U.S. provisional patent covering this new device.

"The microfabricated nature of the new optical tweezer offers an important advantage over conventional optical tweezers based on microscope objective lenses," says Crozier. "High performance objective lenses usually have very short working distances -- the trap is often ~200 mm or less from the front surface of the lens. This prevents their use in many microfluidic chips since these frequently have glass walls that are thicker than this."

The researchers note that the Fresnel Zone Plate optical tweezers could be fabricated on the inner walls of microfluidic channels or even inside cylindrical or spherical chambers and could perform calibrated force measurements in a footprint of only 100x100μm.

Traditional tweezers, by contrast, would suffer from crippling aberrations in such locations. Moreover, in experimental trials, the optical tweezers exhibited trapping performance comparable to conventional optical tweezers when the diffraction efficiency was taken into account.

The researchers envision using their new tweezer inside microfluidic chips to carry out fluid velocity, refractive index, and local viscosity measurements. Additional applications include biological force measurements and sorting particles based on their size and refractive index. Particle-sorting chips based on large arrays of tweezers could be used to extract the components of interest of a biological sample in a high-throughput manner.

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.seas.harvard.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>