Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful explosions suggest neutron star missing link

25.02.2008
Observations from NASA's Rossi X-ray Timing Explorer (RXTE) have revealed that the youngest known pulsing neutron star has thrown a temper tantrum. The collapsed star occasionally unleashes powerful bursts of X-rays, which are forcing astronomers to rethink the life cycle of neutron stars.

"We are watching one type of neutron star literally change into another right before our very eyes. This is a long-sought missing link between different types of pulsars," says Fotis Gavriil of NASA's Goddard Space Flight Center in Greenbelt, Md., and the University of Maryland, Baltimore. Gavriil is lead author of a paper in the February 21 issue of Sciencexpress.

A neutron star forms when a massive star explodes as a supernova, leaving behind an ultradense core. Most known neutron stars emit regular pulsations that are powered by rapid spins. Astronomers have found nearly 1,800 of these so-called pulsars in our galaxy. Pulsars have incredibly strong magnetic fields by Earthly standards, but a dozen of them - slow rotators known as magnetars - actually derive their energy from incredibly powerful magnetic fields, the strongest known in the universe. These fields can stress the neutron star's solid crust past the breaking point, triggering starquakes that snap magnetic-field lines, producing violent and sporadic X-ray bursts.

But what is the evolutionary relationship between pulsars and magnetars" Astronomers would like to know if magnetars represent a rare class of pulsars, or if some or all pulsars go through a magnetar phase during their life cycles.

Gavriil and his colleagues have found an important clue by examining archival RXTE data of a young neutron star, known as PSR J1846-0258 for its sky coordinates in the constellation Aquila. Previously, astronomers had classified PSR J1846 as a normal pulsar because of its fast spin (3.1 times per second) and pulsar-like spectrum. But RXTE caught four magnetar-like X-ray bursts on May 31, 2006, and another on July 27, 2006. Although none of these events lasted longer than 0.14 second, they all packed the wallop of at least 75,000 Suns.

"Never before has a regular pulsar been observed to produce magnetar bursts," says Gavriil.

"Young, fast-spinning pulsars were not thought to have enough magnetic energy to generate such powerful bursts," says coauthor Marjorie Gonzalez, who worked on this paper at McGill University in Montreal, Canada, but who is now based at the University of British Columbia in Vancouver. "Here's a normal pulsar that's acting like a magnetar."

Observations from NASA's Chandra X-ray Observatory also provided key information. Chandra observed the neutron star in October 2000 and again in June 2006, around the time of the bursts. Chandra showed the object had brightened in X-rays, confirming that the bursts were from the pulsar, and that its spectrum had changed to become more magnetar- like.

Astronomers know that PSR J1846 is very young for several reasons. First, it resides inside a supernova remnant known as Kes 75, an indicator that it hasn't had time to wander from its birthplace. Second, based on the rapidity that its spin rate is slowing down, astronomers calculate that it can be no older than 884 years - an infant on the cosmic timescale. Magnetars are thought to be about 10,000 years old, whereas most pulsars are thought to be considerably older.

The fact that PSR J1846's spin rate is slowing down relatively fast also means that it has a strong magnetic field that is braking the rotation. The implied magnetic field is trillions of times stronger than Earth's field, but it's 10 to 100 times weaker than typical magnetar field strengths. Coauthor Victoria Kaspi of McGill University notes, "PSR J1846's actual magnetic field could be much stronger than the measured amount, suggesting that many young neutron stars classified as pulsars might actually be magnetars in disguise, and that the true strength of their magnetic field only reveals itself over thousands of years as they ramp up in activity."

Robert Naeye | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2008/magnetar_hybrid.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>