Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful explosions suggest neutron star missing link

25.02.2008
Observations from NASA's Rossi X-ray Timing Explorer (RXTE) have revealed that the youngest known pulsing neutron star has thrown a temper tantrum. The collapsed star occasionally unleashes powerful bursts of X-rays, which are forcing astronomers to rethink the life cycle of neutron stars.

"We are watching one type of neutron star literally change into another right before our very eyes. This is a long-sought missing link between different types of pulsars," says Fotis Gavriil of NASA's Goddard Space Flight Center in Greenbelt, Md., and the University of Maryland, Baltimore. Gavriil is lead author of a paper in the February 21 issue of Sciencexpress.

A neutron star forms when a massive star explodes as a supernova, leaving behind an ultradense core. Most known neutron stars emit regular pulsations that are powered by rapid spins. Astronomers have found nearly 1,800 of these so-called pulsars in our galaxy. Pulsars have incredibly strong magnetic fields by Earthly standards, but a dozen of them - slow rotators known as magnetars - actually derive their energy from incredibly powerful magnetic fields, the strongest known in the universe. These fields can stress the neutron star's solid crust past the breaking point, triggering starquakes that snap magnetic-field lines, producing violent and sporadic X-ray bursts.

But what is the evolutionary relationship between pulsars and magnetars" Astronomers would like to know if magnetars represent a rare class of pulsars, or if some or all pulsars go through a magnetar phase during their life cycles.

Gavriil and his colleagues have found an important clue by examining archival RXTE data of a young neutron star, known as PSR J1846-0258 for its sky coordinates in the constellation Aquila. Previously, astronomers had classified PSR J1846 as a normal pulsar because of its fast spin (3.1 times per second) and pulsar-like spectrum. But RXTE caught four magnetar-like X-ray bursts on May 31, 2006, and another on July 27, 2006. Although none of these events lasted longer than 0.14 second, they all packed the wallop of at least 75,000 Suns.

"Never before has a regular pulsar been observed to produce magnetar bursts," says Gavriil.

"Young, fast-spinning pulsars were not thought to have enough magnetic energy to generate such powerful bursts," says coauthor Marjorie Gonzalez, who worked on this paper at McGill University in Montreal, Canada, but who is now based at the University of British Columbia in Vancouver. "Here's a normal pulsar that's acting like a magnetar."

Observations from NASA's Chandra X-ray Observatory also provided key information. Chandra observed the neutron star in October 2000 and again in June 2006, around the time of the bursts. Chandra showed the object had brightened in X-rays, confirming that the bursts were from the pulsar, and that its spectrum had changed to become more magnetar- like.

Astronomers know that PSR J1846 is very young for several reasons. First, it resides inside a supernova remnant known as Kes 75, an indicator that it hasn't had time to wander from its birthplace. Second, based on the rapidity that its spin rate is slowing down, astronomers calculate that it can be no older than 884 years - an infant on the cosmic timescale. Magnetars are thought to be about 10,000 years old, whereas most pulsars are thought to be considerably older.

The fact that PSR J1846's spin rate is slowing down relatively fast also means that it has a strong magnetic field that is braking the rotation. The implied magnetic field is trillions of times stronger than Earth's field, but it's 10 to 100 times weaker than typical magnetar field strengths. Coauthor Victoria Kaspi of McGill University notes, "PSR J1846's actual magnetic field could be much stronger than the measured amount, suggesting that many young neutron stars classified as pulsars might actually be magnetars in disguise, and that the true strength of their magnetic field only reveals itself over thousands of years as they ramp up in activity."

Robert Naeye | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2008/magnetar_hybrid.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>