Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Sun will vaporise the Earth unless we can change our orbit

22.02.2008
New calculations by University of Sussex astronomers predict that the Earth will be swallowed up by the Sun in about 7.6 billion years unless the Earth’s orbit can be altered.

Dr Robert Smith, Emeritus Reader in Astronomy, said his team previously calculated that the Earth would escape ultimate destruction, although be battered and burnt to a cinder. But this did not take into account the effect of the drag caused by the outer atmosphere of the dying Sun.

He says: "We showed previously that, as the Sun expanded, it would lose mass in the form of a strong wind, much more powerful than the current solar wind. This would reduce the gravitational pull of the Sun on the Earth, allowing the Earth's orbit to move outwards, ahead of the expanding Sun.

“If that were the only effect the Earth would indeed escape final destruction. However, the tenuous outer atmosphere of the Sun extends a long way beyond its visible surface, and it turns out the Earth would actually be orbiting within these very low density outer layers. The drag caused by this low-density gas is enough to cause the Earth to drift inwards, and finally to be captured and vaporised by the Sun.”

The new paper was written in collaboration with Dr Klaus-Peter Schroeder, previously at Sussex, who is now in the Astronomy Department of the University of Guanajuato in Mexico.

Life on Earth will have disappeared long before 7.6 billion years, however. Scientists have shown that the Sun's slow expansion will cause the temperature at the surface of the Earth to rise. Oceans will evaporate, and the atmosphere will become laden with water vapour, which (like carbon dioxide) is a very effective greenhouse gas. Eventually, the oceans will boil dry and the water vapour will escape into space. In a billion years from now the Earth will be a very hot, dry and uninhabitable ball.

Can anything be done to prevent this fate? Professor Smith points to a remarkable scheme proposed by a team at Santa Cruz University, who suggest harnessing the gravitational effects of a close passage by a large asteroid to "nudge" the Earth's orbit gradually outwards away from the encroaching Sun. A suitable passage every 6000 years or so would be enough to keep the Earth out of trouble and allow life to survive for at least 5 billion years, and possibly even to survive the Sun's red giant phase.

“This sounds like science fiction,” says Professor Smith. “But it seems that the energy requirements are just about possible and the technology could be developed over the next few centuries.” However, it is a high-risk strategy - a slight miscalculation, and the asteroid could actually hit the Earth, with catastrophic consequences. “A safer solution may be to build a fleet of interplanetary 'life rafts' that could manoeuvre themselves always out of reach of the Sun, but close enough to use its energy,” he adds.

Jacqui Bealing | alfa
Further information:
http://www.sussex.ac.uk
http://www.sussex.ac.uk/press_office/media/media191.shtml

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>