Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Sun will vaporise the Earth unless we can change our orbit

22.02.2008
New calculations by University of Sussex astronomers predict that the Earth will be swallowed up by the Sun in about 7.6 billion years unless the Earth’s orbit can be altered.

Dr Robert Smith, Emeritus Reader in Astronomy, said his team previously calculated that the Earth would escape ultimate destruction, although be battered and burnt to a cinder. But this did not take into account the effect of the drag caused by the outer atmosphere of the dying Sun.

He says: "We showed previously that, as the Sun expanded, it would lose mass in the form of a strong wind, much more powerful than the current solar wind. This would reduce the gravitational pull of the Sun on the Earth, allowing the Earth's orbit to move outwards, ahead of the expanding Sun.

“If that were the only effect the Earth would indeed escape final destruction. However, the tenuous outer atmosphere of the Sun extends a long way beyond its visible surface, and it turns out the Earth would actually be orbiting within these very low density outer layers. The drag caused by this low-density gas is enough to cause the Earth to drift inwards, and finally to be captured and vaporised by the Sun.”

The new paper was written in collaboration with Dr Klaus-Peter Schroeder, previously at Sussex, who is now in the Astronomy Department of the University of Guanajuato in Mexico.

Life on Earth will have disappeared long before 7.6 billion years, however. Scientists have shown that the Sun's slow expansion will cause the temperature at the surface of the Earth to rise. Oceans will evaporate, and the atmosphere will become laden with water vapour, which (like carbon dioxide) is a very effective greenhouse gas. Eventually, the oceans will boil dry and the water vapour will escape into space. In a billion years from now the Earth will be a very hot, dry and uninhabitable ball.

Can anything be done to prevent this fate? Professor Smith points to a remarkable scheme proposed by a team at Santa Cruz University, who suggest harnessing the gravitational effects of a close passage by a large asteroid to "nudge" the Earth's orbit gradually outwards away from the encroaching Sun. A suitable passage every 6000 years or so would be enough to keep the Earth out of trouble and allow life to survive for at least 5 billion years, and possibly even to survive the Sun's red giant phase.

“This sounds like science fiction,” says Professor Smith. “But it seems that the energy requirements are just about possible and the technology could be developed over the next few centuries.” However, it is a high-risk strategy - a slight miscalculation, and the asteroid could actually hit the Earth, with catastrophic consequences. “A safer solution may be to build a fleet of interplanetary 'life rafts' that could manoeuvre themselves always out of reach of the Sun, but close enough to use its energy,” he adds.

Jacqui Bealing | alfa
Further information:
http://www.sussex.ac.uk
http://www.sussex.ac.uk/press_office/media/media191.shtml

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>