Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomy technology brings nanoparticle probes into sharper focus

21.02.2008
While pondering the challenges of distinguishing one nano-sized probe image from another in a mass of hundreds or thousands of nanoprobes, researchers at Georgia Tech and Emory University made an interesting observation. The tiny, clustered dots of light looked a lot like a starry sky on a clear night.

The biomedical researchers realized that astronomers had already made great strides in solving a problem very similar to their own — isolating and analyzing one dot (in this case a star) in a crowded field of light. They hypothesized that a computer system designed for stellar photometry, a branch of astronomy focused on measuring the brightness of stars, could hold the solution to their problem.

Now, Georgia Tech and Emory researchers have created a technology based on stellar photometry software that provides more precise images of single molecules tagged with nanoprobes, particles specially designed to bind with a certain type of cell or molecule and illuminate when the target is found. The clearer images allow researchers to collect more detailed information about a single molecule, such as how the molecule is binding in a gene sequence, taking scientists a few steps closer to truly personalized and predictive medicine as well as more complex biomolecular structural mapping.

In addition to biomedical applications, the system could be used to clarify other types of nanoparticle probes, including tagged particles or molecules.

The research is detailed in this week’s online Early Edition of the Proceedings of the National Academy of Sciences (PNAS).

“As more powerful imaging technologies are developed, scientists face a real challenge to quantitatively analyze and interpret these new mountains of data,” said May Wang, an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “This PNAS paper is only a start, but I expect that innovative computing and data processing will be increasingly used to reveal detailed and quantitative features not currently available to biomedical researchers.”

“This work is pointing to a new era in light microscopy in which single molecule detection is achieved at nanometer resolution,” said Dr. Shuming Nie, a professor of biomedical engineering and chemistry and also the director of the Emory-Georgia Tech Cancer Nanotechnology Center. “This is also an example of interdisciplinary research in which advanced computing meets nanotechnology. I envision major applications not only for single-molecule imaging, but also for ultrasensitive medical diagnostics.”

Because scientists frequently use several different colors of nanoprobes to color code genes and proteins, a blended color dot is a common challenge when analyzing images. For every few green or red dots in an image, there could be a few yellow dots as well, indicating that at least two dots are clustering to create the appearance of a new color.

While less than precise nanoprobe images yield valuable information, the Georgia Tech and Emory research team knew that better technology was needed to pinpoint the exact distance in nanometers between probes to reveal important information about the size and binding geometry of targeted molecules.

“We had no way of knowing for sure if we were looking at one molecule or two or three molecules very near one another,” said Wang. “The fuzzy dot images were not precise enough on the nanometer level to truly tell us how these markers reflect DNA, but this system allows us to collect quantitative data and prove — not hypothesize — how genes are behaving.”

Instead of starting from scratch to create a system to isolate the clumped nanoprobe images, the Georgia Tech and Emory researchers pursued their stellar photometry idea by adapting DAOPHOT, a program written by Peter Stetson at the Dominion Astrophysical Observatory designed to handle crowded fields of stars.

After adapting DAOPHOT, the research team used color-coded nanoparticles to beat the traditional diffraction limit by nearly two orders of magnitude, allowing routine super-resolution imaging at one nanometer resolution. And by using DNA molecules, two color-coded nanoparticles are designed to recognize two binding sites on a single target. Then the particles are brought together within nanometer distances after target binding.

These distances are sorted out by highly efficient image processing technology, leading to detection and identification of individual molecules based on the target’s geometric size.

Compared to other single molecule imaging methods, the Georgia Tech and Emory system allows for higher-speed detection involving much larger sample volumes (microliter to milliliters).

Collaborators on the project include Amit Agrawal and Geoffrey Wang from the Departments of Biomedical Engineering and Chemistry at Emory and Georgia Tech, and Rajesh Deo from the Department of Physics and Astronomy at Georgia State University.

The research was funded by the National Institutes of Health, the Department of Energy Genomes to Life Program and the Georgia Cancer Coalition. Computer support was also provided by Microsoft and Hewlett-Packard.

The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 18,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

Megan McRainey | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>