Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA MidSTAR-1 Successful Technologies May Be Revolutionary

20.02.2008
Two new technologies launched onboard a U.S. Naval Academy satellite called MidSTAR-1 have proven successful in their tests in space. One technology is a sensor that can check for harmful chemicals and the other is a special "film" that can control heat.

These technologies were collaboratively developed between NASA’s Goddard Space Flight Center, Greenbelt, Md.; NASA’s Ames Research Center, Moffett Field, Calif.; and Eclipse Energy Systems Inc. of various U.S. locations, respectively.

The nano chemsensor unit (NCSU), can sense chemicals and contaminants that may be harmful to astronauts, as well as a wide range of scientifically interesting compounds. "The chemical nanosensor is like a smoke detector that would fit on the end of an eraser," said Dan Powell, lead nanotechnologist for Goddard. The NCSU was developed by Dr. Jing Li of Ames. Goddard was instrumental in identifying applications, as well as facilitating this first-ever demonstration of applied nanotechnology in space, on-board MidStar-1.

The NCSU's successful operation aboard MidSTAR-1 proved that it senses target chemicals both accurately and repeatedly in space. The NCSU uses a network of tiny carbon nanotubes that are about 10,000 times thinner than a human hair, to sense various gases and their concentrations. These nanosensors are developed for NASA missions, such as cabin air monitoring for a crew exploration vehicle, in-flight fuel leak detection, planetary exploration, and earth science observation. This experiment proved that the nanosensors are robust and can undergo the vigorous launch process and can work in the space environment, such as microgravity, radiation, temperature variation, and vacuum.

The sensor in orbit was designed to detect trace amounts of nitrogen dioxide, a common air pollutant. This capability, when combined with the unit's extremely small size, power consumption and heat output makes the NCSU useful to many industries. It could find its way into homeland security applications such as explosives trace detectors.

The NCSU also can be used to measure nitrogen dioxide levels in the upper atmosphere. "If you had a sensor like this, the size of a postage stamp, you could lick and stick it to monitor chemicals and environmental constituents anywhere," Powell said. "NASA wants to put this in the International Space Station to monitor contaminants, and the Federal Aviation Administration may build hand-held NCSU systems so aircraft crews could detect explosives and/or harmful gases in aircraft," Powell said.

MidSTAR-1 sits aboard an Atlas 5 rocket the night before launch at Cape Canaveral Air Force Station in Florida. Credit: United Launch Alliance

> Larger image A relatively cheap integrated NCSU system capable of being stuck to any surface would have a wireless radio transmitter, ad-hoc network, and tiny solar cell or battery power supply about the size of a quarter. It could monitor environments and relay detection data for months or years before a replacement would be needed.

Since MidSTAR-1 was launched in March 2007, the sensor has been improved and can now detect and identify more than 15 different chemicals, including ammonia, hydrogen peroxide, hydrogen chloride, and formaldehyde.

Second-generation NCSUs being developed for the space station are capable of selectively sensing several chemical compounds simultaneously and may be hardwired to a permanent power- and data-transmission system for continuous, long-term monitoring of a wide array of environments. Whether wireless or hard-wired, the systems could relay environmental status, contamination or threat data from multiple sites to centralized monitoring-stations located just about anywhere in the world, including to and from spacecraft and orbiting satellites.

The second successful revolutionary experiment on MidSTAR-1 is a variable emissivity film. The flight onboard MidSTAR-1 demonstrated how a special film, no thicker than an empty plastic sandwich bag, can control the temperature on a spacecraft. The technology had not been demonstrated successfully in space until MidSTAR-1. Until now, it has been difficult to make a film that could survive the harsh conditions of space.

Electrochromics is the science behind the film, which could be applied to outer surface of a spacecraft. By controlling voltage differential across the film, it is possible to change the film's ability to radiate waste heat into space or keep heat in a spacecraft. Very little power is needed, and the process is reversible.

The United Launch Alliance booster shot into the night sky above Florida's Cape Canaveral Air Force Station on March 8, 2007 at 10:10 p.m. EST, carrying MidSTAR-1 into orbit. Credit: United Launch Alliance

> Larger image Used on a spacecraft, the film can reduce launch weight, make future thermal design easier, reduce power consumption, and allow more accurate control of the spacecraft's inside temperature. The weight savings could be used to accommodate additional payloads, scientific instruments and astronauts. The film also could be used on satellites, space antennas, spacesuits and visors and robotic systems that will be placed on the Moon and other planets in the future.

There are many applications for this technology beyond space. It could be used to cover buildings and homes to reduce solar heat gain in the summer and decrease heat loss in the winter. One day, it could be possible to control the tint of a car window with the press of a button.

The variable emissivity film was manufactured by Eclipse Energy Systems Inc., of St. Petersburg, Fla., with joint financial sponsorship from Goddard and the U.S. Air Force.

Neither of the experiments would have reached space if not for the MidSTAR program. Billy Smith, Director of the Small Satellite Program and manager of the MidSTAR program at the U.S. Naval Academy, Annapolis, Md., made it possible to launch these experiments on a limited budget.

"MidSTAR is the seventh piece of hardware that the small satellite program has flown. It's by far the most sophisticated and most ambitious," Smith said. "It's proven to be the most productive and all four experiments operating in space are producing excellent data." Naval Academy students built the MidSTAR-1 satellite and placed the experiments onboard. The school currently controls the satellite and collects data, transferring it to Eclipse and other users.

Naval Academy students are building another satellite, MidSTAR-2. Work will continue through 2008 under the auspices of the U.S. Defense Department. MidSTAR-2 will carry four Goddard experiments into space in 2011 to look at different parts of Earth's atmosphere, gamma rays and solar winds.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2008/midstar.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>