Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA MidSTAR-1 Successful Technologies May Be Revolutionary

20.02.2008
Two new technologies launched onboard a U.S. Naval Academy satellite called MidSTAR-1 have proven successful in their tests in space. One technology is a sensor that can check for harmful chemicals and the other is a special "film" that can control heat.

These technologies were collaboratively developed between NASA’s Goddard Space Flight Center, Greenbelt, Md.; NASA’s Ames Research Center, Moffett Field, Calif.; and Eclipse Energy Systems Inc. of various U.S. locations, respectively.

The nano chemsensor unit (NCSU), can sense chemicals and contaminants that may be harmful to astronauts, as well as a wide range of scientifically interesting compounds. "The chemical nanosensor is like a smoke detector that would fit on the end of an eraser," said Dan Powell, lead nanotechnologist for Goddard. The NCSU was developed by Dr. Jing Li of Ames. Goddard was instrumental in identifying applications, as well as facilitating this first-ever demonstration of applied nanotechnology in space, on-board MidStar-1.

The NCSU's successful operation aboard MidSTAR-1 proved that it senses target chemicals both accurately and repeatedly in space. The NCSU uses a network of tiny carbon nanotubes that are about 10,000 times thinner than a human hair, to sense various gases and their concentrations. These nanosensors are developed for NASA missions, such as cabin air monitoring for a crew exploration vehicle, in-flight fuel leak detection, planetary exploration, and earth science observation. This experiment proved that the nanosensors are robust and can undergo the vigorous launch process and can work in the space environment, such as microgravity, radiation, temperature variation, and vacuum.

The sensor in orbit was designed to detect trace amounts of nitrogen dioxide, a common air pollutant. This capability, when combined with the unit's extremely small size, power consumption and heat output makes the NCSU useful to many industries. It could find its way into homeland security applications such as explosives trace detectors.

The NCSU also can be used to measure nitrogen dioxide levels in the upper atmosphere. "If you had a sensor like this, the size of a postage stamp, you could lick and stick it to monitor chemicals and environmental constituents anywhere," Powell said. "NASA wants to put this in the International Space Station to monitor contaminants, and the Federal Aviation Administration may build hand-held NCSU systems so aircraft crews could detect explosives and/or harmful gases in aircraft," Powell said.

MidSTAR-1 sits aboard an Atlas 5 rocket the night before launch at Cape Canaveral Air Force Station in Florida. Credit: United Launch Alliance

> Larger image A relatively cheap integrated NCSU system capable of being stuck to any surface would have a wireless radio transmitter, ad-hoc network, and tiny solar cell or battery power supply about the size of a quarter. It could monitor environments and relay detection data for months or years before a replacement would be needed.

Since MidSTAR-1 was launched in March 2007, the sensor has been improved and can now detect and identify more than 15 different chemicals, including ammonia, hydrogen peroxide, hydrogen chloride, and formaldehyde.

Second-generation NCSUs being developed for the space station are capable of selectively sensing several chemical compounds simultaneously and may be hardwired to a permanent power- and data-transmission system for continuous, long-term monitoring of a wide array of environments. Whether wireless or hard-wired, the systems could relay environmental status, contamination or threat data from multiple sites to centralized monitoring-stations located just about anywhere in the world, including to and from spacecraft and orbiting satellites.

The second successful revolutionary experiment on MidSTAR-1 is a variable emissivity film. The flight onboard MidSTAR-1 demonstrated how a special film, no thicker than an empty plastic sandwich bag, can control the temperature on a spacecraft. The technology had not been demonstrated successfully in space until MidSTAR-1. Until now, it has been difficult to make a film that could survive the harsh conditions of space.

Electrochromics is the science behind the film, which could be applied to outer surface of a spacecraft. By controlling voltage differential across the film, it is possible to change the film's ability to radiate waste heat into space or keep heat in a spacecraft. Very little power is needed, and the process is reversible.

The United Launch Alliance booster shot into the night sky above Florida's Cape Canaveral Air Force Station on March 8, 2007 at 10:10 p.m. EST, carrying MidSTAR-1 into orbit. Credit: United Launch Alliance

> Larger image Used on a spacecraft, the film can reduce launch weight, make future thermal design easier, reduce power consumption, and allow more accurate control of the spacecraft's inside temperature. The weight savings could be used to accommodate additional payloads, scientific instruments and astronauts. The film also could be used on satellites, space antennas, spacesuits and visors and robotic systems that will be placed on the Moon and other planets in the future.

There are many applications for this technology beyond space. It could be used to cover buildings and homes to reduce solar heat gain in the summer and decrease heat loss in the winter. One day, it could be possible to control the tint of a car window with the press of a button.

The variable emissivity film was manufactured by Eclipse Energy Systems Inc., of St. Petersburg, Fla., with joint financial sponsorship from Goddard and the U.S. Air Force.

Neither of the experiments would have reached space if not for the MidSTAR program. Billy Smith, Director of the Small Satellite Program and manager of the MidSTAR program at the U.S. Naval Academy, Annapolis, Md., made it possible to launch these experiments on a limited budget.

"MidSTAR is the seventh piece of hardware that the small satellite program has flown. It's by far the most sophisticated and most ambitious," Smith said. "It's proven to be the most productive and all four experiments operating in space are producing excellent data." Naval Academy students built the MidSTAR-1 satellite and placed the experiments onboard. The school currently controls the satellite and collects data, transferring it to Eclipse and other users.

Naval Academy students are building another satellite, MidSTAR-2. Work will continue through 2008 under the auspices of the U.S. Defense Department. MidSTAR-2 will carry four Goddard experiments into space in 2011 to look at different parts of Earth's atmosphere, gamma rays and solar winds.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2008/midstar.html

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>