Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble discovers 67 gravitationally lensed galaxies in the distant Universe

20.02.2008
The lenses come from a recently completed, large set of observations as part of a huge project to survey a single 1.6 square degree field of sky (nine times the area of the full Moon) with several space-based and Earth-based observatories.

The COSMOS project, led by Nick Scoville at the California Institute of Technology, USA, used observations from several observatories including the Hubble Space Telescope, as well as the Spitzer Space Telescope, the XMM-Newton spacecraft, the Chandra X-ray Observatory, the Very Large Telescope (VLT), the Subaru Telescope and CFHT.


In this image, six examples of the rich diversity of 67 strong gravitational lenses found in the COSMOS survey. The lenses were discovered in a recently completed, large set of observations as part of a project to survey a single 1.6-square-degree field of sky (nine times the area of the full Moon) with several space-based and Earth-based observatories. Gravitational lenses occur when light travelling towards us from a distant galaxy is magnified and distorted as it encounters a massive object between the galaxy and us. These gravitational lenses often allow astronomers to peer much further back into the early Universe than they would normally be able to. The COSMOS project, led by Nick Scoville at the California Institute of Technology, used observations from several observatories including the Hubble Space Telescope, the Spitzer Space Telescope, the XMM-Newton spacecraft, the Chandra X-ray Observatory, the Very Large Telescope (VLT), and the Subaru Telescope. In total 67 gravitational lenses were found.

A team of European astronomers led by Jean-Paul Kneib (Laboratoire d’Astrophysique de Marseille) and Cécile Faure (Zentrum für Astronomie, University of Heidelberg) analysed the results from Hubble’s Advanced Camera for Surveys (ACS). From ACS high-resolution images, complemented by the extensive ground-based follow-up observations, astronomers have identified 67 strong gravitationally lensed galaxies. These were found around very massive galaxies that are usually elliptical or lenticular in shape and often exhibit a paucity of gas and dust without spiral arms or discs. The strong lensing produced by massive galaxies is much more common than the usual giant “arc” gravitationally lensed galaxies that Hubble has previously observed; but they are generally more difficult to find as they extend over a smaller area and have a wide variety of shapes.

Gravitational lensing occurs when light travelling towards us from a distant galaxy is magnified and distorted as it encounters a massive object between the galaxy and us. These gravitational lenses often allow astronomers to peer much further back into the early Universe than they would normally be able to.

The massive objects that create the lenses are usually huge clusters of massive galaxies. “We typically see the gravitational lens create a series of bright arcs or spots around a galaxy cluster. What we are observing here is a similar effect but on much smaller scale – happening only around a single but very massive galaxy,” says Jean-Paul Kneib.

Of the 67 gravitational lenses identified in the COSMOS survey, the most impressive lenses show the distorted and warped light of one or two background galaxies. At least four of the lenses give rise to Einstein rings, a complete circular image of a background galaxy, which is formed when the background galaxy, a massive foreground galaxy and the Hubble Space Telescope are all aligned perfectly.

Hubble astronomers went through a unique process to identify these incredible natural lenses. First, possible galaxies were identified from a galaxy catalogue, comprising more than two million galaxies. “We then had to look through each individual COSMOS image by eye and identify any potential strong gravitational lenses,” said Cécile Faure. Finally, checks were made to see if the foreground galaxy and the lensed galaxy were really different or just one galaxy with an odd shape. “With this sample of gravitational systems identified by the human eye, we now plan use the sample of lenses to train robot software to find more of these lenses across the entire Hubble image archive, and we may find even more strong lensing systems in the COSMOS field,” added Jean-Paul Kneib.

The new results confirm that the Universe is filled with gravitational lensing systems. Extrapolating these new findings to the whole sky, predicts no less than half a million similar lenses in total. The future prospects for finding more of these systems are thus excellent.

The study of these gravitational lenses will give astronomers a first-rate opportunity to probe the dark matter distribution around galactic lenses. Once astronomers find even larger numbers of these smaller, stronger lenses they can be used to create a census of galaxy masses in the Universe to test the predictions of cosmological models.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0806.html

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>