Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology makes 3-D imaging quicker, easier

19.02.2008
Possible applications of technology widespread

Technology invented by scientists from The Johns Hopkins University and Ben-Gurion University of the Negev can make three-dimensional imaging quicker, easier, less expensive and more accurate, the researchers said.

This new technology, dubbed FINCH, for Fresnel incoherent correlation holography, could have implications in medical applications such as endoscopy, ophthalmology, CT scanning, X-ray imaging and ultrasounds, co-inventor Gary Brooker said. It may also be applicable to homeland security screening, 3-D photography and 3-D video, he said.

A report presenting the first demonstration of this technology -- with a 3-D microscope called a FINCHSCOPE -- will appear in the March issue of Nature Photonics and will be available on the Nature Photonics Web site on Feb. 17.

“Normally, 3-D imaging requires taking multiple images on multiple planes and then reconstructing the images,” said Brooker, director of the Johns Hopkins University Microscopy Center on the university’s Montgomery County Campus.

“This is a slow process that is restricted to microscope objectives that have less than optimal resolving power,” said Brooker, a research professor of chemistry in Krieger School of Arts and Sciences who also has an appointment in the Whiting School of Engineering Advanced Technology Laboratory. "For this reason, holography currently is not widely applied to the field of 3-D fluorescence microscopic imaging.”

The FINCH technology and the FINCHSCOPE uses microscope objectives with the highest resolving power, a spatial light modulator, a charge-coupled device camera and some simple filters to enable the acquisition of 3-D microscopic images without the need for scanning multiple planes.

The Nature Photonics article reports on a use of the FINCHSCOPE to take a 3-D still image, but moving 3-D images are coming, said Brooker and co-inventor Joseph Rosen, professor of electrical and computer engineering at Ben-Gurion University of the Negev in Israel.

“With traditional 3-D imaging, you cannot capture a moving object,” Brooker said. “With the FINCHSCOPE, you can photograph multiple planes at once, enabling you to capture a 3-D image of a moving object. Researchers now will be able to track biological events happening quickly in cells.”

"In addition, the FINCH technique shows great promise in rapidly recording 3-D information in any scene, independent of illumination,” Rosen said.

Robin Ferrier | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>