Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collaboration helps make JILA strontium atomic clock 'best in class'

15.02.2008
'Crystal of light' clock surpasses accuracy of NIST-F1 fountain clock

A next-generation atomic clock that tops previous records for accuracy in clocks based on neutral atoms has been demonstrated by physicists at JILA, a joint institute of the Commerce Department's National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder. The new clock, based on thousands of strontium atoms trapped in grids of laser light, surpasses the accuracy of the current U.S. time standard based on a "fountain" of cesium atoms.

JILA's experimental strontium clock, described in the Feb. 14 issue of Science Express,* is now the world's most accurate atomic clock based on neutral atoms, more than twice as accurate as the NIST-F1 standard cesium clock located just down the road at the NIST campus in Boulder.

The JILA strontium clock would neither gain nor lose a second in more than 200 million years, compared to NIST F-1's current accuracy of over 80 million years.

The advance was made possible by Boulder's critical mass of state-of-the-art timekeeping equipment and expertise. The JILA strontium clock was evaluated by remotely comparing it to a third NIST atomic clock, an experimental model based on neutral calcium atoms. The best clocks can be precisely evaluated by comparing them to other nearby clocks with similar performance; very long-distance signal transfer, such as by satellite, is too unstable for practical, reliable comparisons of the new generation of clocks. In the latest experiment, signals from the two clocks were compared via a 3.5-kilometer underground fiber-optic cable.

The strontium and calcium clocks rely on the use of optical light, which has higher frequencies than the microwaves used in NIST-F1. Because the frequencies are higher, the clocks divide time into smaller units, offering record precision. Laboratories around the world are developing optical clocks based on a variety of different designs and atoms; it is not yet clear which design will emerge as the best and be chosen as the next international standard. The work reported in Science Express is the first optical atomic clock comparison over kilometer-scale urban distances, an important step for worldwide development of future standards.

"This is our first comparison to another optical atomic clock," says NIST/JILA Fellow Jun Ye, who leads the strontium project. "As of now, Boulder is in a very unique position. We have all the ingredients, including multiple optical clocks and the fiber-optic link, working so well. Without a single one of these components, these measurements would not be possible. It's all coming together at this moment in time."

NIST and JILA are home to optical clocks based on a variety of atoms, including strontium, calcium, mercury, aluminum, and ytterbium, each offering different advantages. Ye now plans to compare strontium to the world's most accurate clock, NIST's experimental design based on a single mercury ion (charged atom). The mercury ion clock was accurate to about 1 second in 400 million years in 2006 and performs even better today, according to Jim Bergquist, the NIST physicist who built the clock. The "best" status in atomic clocks is a moving target.

The development and testing of a new generation of optical atomic clocks is important because highly precise clocks are used to synchronize telecom networks and deep-space communications, as well as for navigation and positioning. The race to build even better clocks is expected to lead to new types of gravity sensors, as well as new tests of fundamental physical laws to increase understanding of the universe. Because Ye's group is able to measure and control interactions among so many atoms with such exquisite precision, the JILA work also is expected to lead to new scientific tools for quantum simulations that will help scientists better understand how matter and light behave under the strange rules governing the nanoworld.

In the JILA clock, a few thousand atoms of the alkaline-earth metal strontium are held in a column of about 100 pancake-shaped traps called an "optical lattice." The lattice is formed by standing waves of intense near-infrared laser light. Forming a sort of artificial crystal of light, the lattice constrains atom motion and reduces systematic errors that occur in clocks that use moving balls of atoms, such as NIST-F1. Using thousands of atoms at once also produces stronger signals and eventually may yield more precise results than clocks relying on a single ion, such as mercury. JILA scientists detect strontium's "ticks" (430 trillion per second) by bathing the atoms in very stable red laser light at the exact frequency that prompts jumps between two electronic energy levels. The JILA team recently improved the clock by achieving much better control of the atoms. For example, they can now cancel out the atoms' internal sensitivity to external magnetic fields, which otherwise degrade clock accuracy. They also characterized more precisely the effects of confining atoms in the lattice.

The NIST calcium clock, which was used to evaluate the performance of the new strontium clock, relies on the ticking of clouds of millions of calcium atoms. This clock offers high stability for short times, relatively compact size and simplicity of operation. NIST scientists believe it could be made portable and perhaps transported to other institutions for evaluations of other optical atomic clocks. JILA scientists were able to take advantage of the calcium clock's good short-term stability by making fast measurements of one property in the strontium clock and then quickly switching to a different property to start the comparison over again.

The JILA-NIST collaborations benefit both institutions by enabling scientists not only to compare and measure clock performance, but also to share tools and expertise. Another key element to the latest comparison was the use of two custom-made frequency combs, the most accurate tool for measuring optical frequencies, which helped to maintain stability during signal transfer between the two institutions. (For background, see http://www.nist.gov/public_affairs/newsfromnist_frequency_combs.htm.)

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/public_affairs/newsfromnist_frequency_combs.htm

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>