Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COUPP experiment tightens limits on dark matter

15.02.2008
Physicists revive bubble chamber technology to search for WIMPs

Scientists working on the COUPP experiment at the Department of Energy’s Fermi National Accelerator Laboratory today (February 14) announced a new development in the quest to observe dark matter. The Chicagoland Observatory for Underground Particle Physics experiment tightened constraints on the “spin-dependent” properties of WIMPS, weakly interacting massive particles that are candidates for dark matter. Their results, combined with the findings of other dark matter searches, contradict the claims for the observation of such particles by the Dark Matter experiment (DAMA) in Italy and further restrict the hunting ground for physicists to track their dark matter quarry.

The COUPP experiment also proved that dusting off an old technology of particle physics, the bubble chamber, offers extraordinary potential as a tool in the search for dark matter.

“Our first results are extremely encouraging, and bubble-chamber technology is eminently scale-able,” said Juan Collar, a University of Chicago professor and spokesman of the COUPP collaboration, which includes 16 scientists and students from the University of Chicago; Indiana University South Bend; and DOE’s Fermilab. “We expect that COUPP will soon have a sweeping sensitivity to dark matter particles, simultaneously exploring both spin-dependent and spin-independent mechanisms for dark matter interaction. This is just one of the aspects that set our experiment apart from the competition.”

Physicists theorize that dark matter particles interact with ordinary matter via different mechanisms that are either dependent or independent of the nuclear spin of the atoms in the detector material.

Previous experiments had severely constrained the possibility that the DAMA observations result from dark matter spin-independent interactions. COUPP has now ruled out the last region of parameter space that allowed for a spin-dependent explanation. Several experiments worldwide, including DAMA itself, had been racing to prove or disprove DAMA’s initial claim to observe WIMPs. If the DAMA result had been due to spin-dependent WIMPs, then COUPP researchers should have found hundreds of WIMPs. They found none above background.

The COUPP collaboration details the results in a paper, “Improved Spin-Dependent WIMP Limits from a Bubble Chamber,” appearing in the February 15 issue of the journal Science.

WIMPs, if they exist, rarely interact with ordinary matter. COUPP uses a glass jar filled with about a liter of iodotrifluoromethane, a fire-extinguishing liquid known as CF3I, to detect a particle as it hits a nucleus, triggering evaporation of a small amount of CF3I. The resulting bubble initially is too small to see but it grows. Using digital cameras, COUPP scientists study the pictures of bubbles once they reach a millimeter in size. They look for statistical variations between photographs that signal whether bubbles were caused by background radiation or by dark matter.

“Eighty-five percent of the total matter of the universe still eludes direct detection,” said Dennis Kovar, acting associate director for high energy physics in the DOE Office of Science. “To discover the nature of dark matter will require both catching dark matter particles with innovative detectors like COUPP's and making and studying dark matter at particle accelerators.”

The COUPP experiment is located 350 feet underground in a tunnel on the Fermilab site.

“To search for WIMPs, COUPP revived one of the oldest tools in particle physics: the bubble chamber. As other detector technology surpassed the bubble chamber in the past two decades, it became nearly extinct in high-energy physics laboratories,” said James Whitmore, NSF program manager. “Now it is making a comeback in one of the most exciting areas of particle physics, the search for dark matter.”

Other experiments, such as the Cryogenic Dark Matter Search at Fermilab, look for dark matter underground using a different technology.

“COUPP’s use of a bubble chamber is an intriguing technology. It has been improving its reach for spin-dependent research,” said Blas Cabrera, Stanford University professor and CDMS spokesman. “It is a valuable tool in the range of technology in the search for dark matter. It is important to have confirmation from radically different technologies.”

“COUPP is a new player in an extremely competitive arena, and it has already demonstrated it can contribute to the search for dark matter,” said Hugh Montgomery, Fermilab associate director for research. “Now they need to show whether or not they can take it to the next level.”

COUPP aims to increase sensitivity by increasing the amount of liquid from one liter to 30 liters in the bubble chamber. Physicists expect soon to start testing the larger chamber at Fermilab. If the larger chamber meets expectations, the experiment could move to a deeper tunnel to reduce the background from cosmic radiation even further.

“No one knows for sure if dark matter is made of WIMPs,” said Andrew Sonnenschein, COUPP collaborator. “If it is, we'll have a chance with the new chamber to find it. That's all we can ask for.”

Tona Kunz | EurekAlert!
Further information:
http://www.fnal.gov

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>