Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


COUPP experiment tightens limits on dark matter

Physicists revive bubble chamber technology to search for WIMPs

Scientists working on the COUPP experiment at the Department of Energy’s Fermi National Accelerator Laboratory today (February 14) announced a new development in the quest to observe dark matter. The Chicagoland Observatory for Underground Particle Physics experiment tightened constraints on the “spin-dependent” properties of WIMPS, weakly interacting massive particles that are candidates for dark matter. Their results, combined with the findings of other dark matter searches, contradict the claims for the observation of such particles by the Dark Matter experiment (DAMA) in Italy and further restrict the hunting ground for physicists to track their dark matter quarry.

The COUPP experiment also proved that dusting off an old technology of particle physics, the bubble chamber, offers extraordinary potential as a tool in the search for dark matter.

“Our first results are extremely encouraging, and bubble-chamber technology is eminently scale-able,” said Juan Collar, a University of Chicago professor and spokesman of the COUPP collaboration, which includes 16 scientists and students from the University of Chicago; Indiana University South Bend; and DOE’s Fermilab. “We expect that COUPP will soon have a sweeping sensitivity to dark matter particles, simultaneously exploring both spin-dependent and spin-independent mechanisms for dark matter interaction. This is just one of the aspects that set our experiment apart from the competition.”

Physicists theorize that dark matter particles interact with ordinary matter via different mechanisms that are either dependent or independent of the nuclear spin of the atoms in the detector material.

Previous experiments had severely constrained the possibility that the DAMA observations result from dark matter spin-independent interactions. COUPP has now ruled out the last region of parameter space that allowed for a spin-dependent explanation. Several experiments worldwide, including DAMA itself, had been racing to prove or disprove DAMA’s initial claim to observe WIMPs. If the DAMA result had been due to spin-dependent WIMPs, then COUPP researchers should have found hundreds of WIMPs. They found none above background.

The COUPP collaboration details the results in a paper, “Improved Spin-Dependent WIMP Limits from a Bubble Chamber,” appearing in the February 15 issue of the journal Science.

WIMPs, if they exist, rarely interact with ordinary matter. COUPP uses a glass jar filled with about a liter of iodotrifluoromethane, a fire-extinguishing liquid known as CF3I, to detect a particle as it hits a nucleus, triggering evaporation of a small amount of CF3I. The resulting bubble initially is too small to see but it grows. Using digital cameras, COUPP scientists study the pictures of bubbles once they reach a millimeter in size. They look for statistical variations between photographs that signal whether bubbles were caused by background radiation or by dark matter.

“Eighty-five percent of the total matter of the universe still eludes direct detection,” said Dennis Kovar, acting associate director for high energy physics in the DOE Office of Science. “To discover the nature of dark matter will require both catching dark matter particles with innovative detectors like COUPP's and making and studying dark matter at particle accelerators.”

The COUPP experiment is located 350 feet underground in a tunnel on the Fermilab site.

“To search for WIMPs, COUPP revived one of the oldest tools in particle physics: the bubble chamber. As other detector technology surpassed the bubble chamber in the past two decades, it became nearly extinct in high-energy physics laboratories,” said James Whitmore, NSF program manager. “Now it is making a comeback in one of the most exciting areas of particle physics, the search for dark matter.”

Other experiments, such as the Cryogenic Dark Matter Search at Fermilab, look for dark matter underground using a different technology.

“COUPP’s use of a bubble chamber is an intriguing technology. It has been improving its reach for spin-dependent research,” said Blas Cabrera, Stanford University professor and CDMS spokesman. “It is a valuable tool in the range of technology in the search for dark matter. It is important to have confirmation from radically different technologies.”

“COUPP is a new player in an extremely competitive arena, and it has already demonstrated it can contribute to the search for dark matter,” said Hugh Montgomery, Fermilab associate director for research. “Now they need to show whether or not they can take it to the next level.”

COUPP aims to increase sensitivity by increasing the amount of liquid from one liter to 30 liters in the bubble chamber. Physicists expect soon to start testing the larger chamber at Fermilab. If the larger chamber meets expectations, the experiment could move to a deeper tunnel to reduce the background from cosmic radiation even further.

“No one knows for sure if dark matter is made of WIMPs,” said Andrew Sonnenschein, COUPP collaborator. “If it is, we'll have a chance with the new chamber to find it. That's all we can ask for.”

Tona Kunz | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>