Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover scaled-down Jupiter and Saturn in a faraway solar system like our own

15.02.2008
An international team of astronomers has discovered two planets that resemble smaller versions of Jupiter and Saturn in a solar system nearly 5,000 light years away.

The find suggests that our galaxy hosts many planetary systems like our own, said Scott Gaudi, assistant professor of astronomy at Ohio State University.

He and his colleagues reported their results in the February 15 issue of the journal Science.

The two planets were revealed when the star they orbit crossed in front of a more distant star as seen from Earth. For a two-week period from late March through early April of 2006, the nearer star magnified the light shining from the farther star.

The phenomenon is called gravitational microlensing, and this was a particularly dramatic example: the light from the more distant star was magnified 500 times.

The Optical Gravitational Lensing Experiment (OGLE) first detected the event, dubbed OGLE-2006-BLG-109, on March 28, 2006. The Microlensing Follow Up Network (MicroFUN), led by Andrew Gould, professor of astronomy at Ohio State, then joined with OGLE to organize astronomers worldwide to gather observations of it. Andrzej Udalski, professor of astronomy at Warsaw University Observatory, is the leader of OGLE.

Gaudi took the lead in analyzing the data as they came in. As he studied the light signal, he saw a distortion that he thought was caused by a Saturn-mass planet. Then, less than a day later, came an additional distortion he wasn't expecting: a "blip" in the signal that appeared to be caused by a second, larger planet orbiting the same star.

Over the next few months, Gaudi demonstrated that this two-planet interpretation was correct. Then David Bennett, a research associate professor of astrophysics and cosmology at the University of Notre Dame, refined Gaudi's preliminary model using sophisticated software, and revealed additional details about the system.

This is the third time a Jupiter-mass planet was found by microlensing, Gaudi explained. In the previous two cases, additional planets would have been very difficult to detect, had they been there.

"This is the first time we had a high-enough magnification event where we had significant sensitivity to a second planet -- and we found one." Gaudi said. "You could call it luck, but I think it might just mean that these systems are common throughout our galaxy."

Astronomers have found two planets at once before, “but using other techniques that don’t pick up on solar systems like ours,” he said.

The newly-discovered planets appear to be gaseous planets like Jupiter and Saturn -- only about 80 percent as big -- and they orbit a star about half the size of the sun. The star is dim and cold compared to ours, issuing only five percent as much light.

Still, the new solar system appears to be a smaller analog of our own. The larger planet is about as massive compared to its star as Jupiter is to ours. The smaller planet shares a similar mass ratio with Saturn.

Also, the smaller planet is roughly twice as far from its star as the larger one, just as Saturn is roughly twice as far away from the sun as Jupiter. Although the star is much dimmer than our sun, temperatures at both planets are likely to be similar to that of Jupiter and Saturn, because they are closer to their star.

“The temperatures are important because these dictate the amount of material that is available for planet formation,” Gaudi said. “Most theorists think that the biggest planet in our solar system formed at Jupiter's location because that is the closest to the sun that ice can form. Saturn is the next biggest because it is in the next location further away, where there is less primordial material available to form planets.”

“Theorists have wondered whether gas giants in other solar systems would form in the same way as ours did. This system seems to answer in the affirmative.”

The fact that astronomers found the planets during the first event that allowed such a detection suggests that these scaled-down versions of our solar system are very common, he added.

Previously, astronomers had found four planets using microlensing; two of those were found by the Ohio State University-based MicroFUN group. The latest two planets make six, and he expects that number to double over the next year as other teams publish new findings.

"We're just getting better at what we do," Gaudi said. "We've hit our stride with this technique."

He has also calculated that the next generation of microlensing experiments -- using telescopes on the ground and in space -- will likely be able to detect analogs to all of our solar system’s planets, except for the tiniest one, Mercury.

The current discovery relied on 11 different ground-based telescopes in countries around the world, including New Zealand, Tasmania, Israel, Chile, the Canary Islands, and the United States.

Both professional and amateur skywatchers joined in. People from three other microlensing collaborations -- the Microlensing Observations in Astrophysics (MOA) Collaboration, the Probing Lensing Anomalies NETwork (PLANET), and the RoboNet Collaboration -- all contributed observations and are co-authors of the study with MicroFUN and OGLE.

Gaudi described this microlensing event as the most complicated one ever studied. The astronomers carefully modeled their data on computers, and explored all possible explanations for the light signal. A year and a half later, they were confident that they’d found two planets. In part, their confidence came from additional observations from the W.M. Keck Observatory in Hawaii, which they used to calculate the mass of the star.

Scott Gaudi | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>