Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers discover scaled-down Jupiter and Saturn in a faraway solar system like our own

An international team of astronomers has discovered two planets that resemble smaller versions of Jupiter and Saturn in a solar system nearly 5,000 light years away.

The find suggests that our galaxy hosts many planetary systems like our own, said Scott Gaudi, assistant professor of astronomy at Ohio State University.

He and his colleagues reported their results in the February 15 issue of the journal Science.

The two planets were revealed when the star they orbit crossed in front of a more distant star as seen from Earth. For a two-week period from late March through early April of 2006, the nearer star magnified the light shining from the farther star.

The phenomenon is called gravitational microlensing, and this was a particularly dramatic example: the light from the more distant star was magnified 500 times.

The Optical Gravitational Lensing Experiment (OGLE) first detected the event, dubbed OGLE-2006-BLG-109, on March 28, 2006. The Microlensing Follow Up Network (MicroFUN), led by Andrew Gould, professor of astronomy at Ohio State, then joined with OGLE to organize astronomers worldwide to gather observations of it. Andrzej Udalski, professor of astronomy at Warsaw University Observatory, is the leader of OGLE.

Gaudi took the lead in analyzing the data as they came in. As he studied the light signal, he saw a distortion that he thought was caused by a Saturn-mass planet. Then, less than a day later, came an additional distortion he wasn't expecting: a "blip" in the signal that appeared to be caused by a second, larger planet orbiting the same star.

Over the next few months, Gaudi demonstrated that this two-planet interpretation was correct. Then David Bennett, a research associate professor of astrophysics and cosmology at the University of Notre Dame, refined Gaudi's preliminary model using sophisticated software, and revealed additional details about the system.

This is the third time a Jupiter-mass planet was found by microlensing, Gaudi explained. In the previous two cases, additional planets would have been very difficult to detect, had they been there.

"This is the first time we had a high-enough magnification event where we had significant sensitivity to a second planet -- and we found one." Gaudi said. "You could call it luck, but I think it might just mean that these systems are common throughout our galaxy."

Astronomers have found two planets at once before, “but using other techniques that don’t pick up on solar systems like ours,” he said.

The newly-discovered planets appear to be gaseous planets like Jupiter and Saturn -- only about 80 percent as big -- and they orbit a star about half the size of the sun. The star is dim and cold compared to ours, issuing only five percent as much light.

Still, the new solar system appears to be a smaller analog of our own. The larger planet is about as massive compared to its star as Jupiter is to ours. The smaller planet shares a similar mass ratio with Saturn.

Also, the smaller planet is roughly twice as far from its star as the larger one, just as Saturn is roughly twice as far away from the sun as Jupiter. Although the star is much dimmer than our sun, temperatures at both planets are likely to be similar to that of Jupiter and Saturn, because they are closer to their star.

“The temperatures are important because these dictate the amount of material that is available for planet formation,” Gaudi said. “Most theorists think that the biggest planet in our solar system formed at Jupiter's location because that is the closest to the sun that ice can form. Saturn is the next biggest because it is in the next location further away, where there is less primordial material available to form planets.”

“Theorists have wondered whether gas giants in other solar systems would form in the same way as ours did. This system seems to answer in the affirmative.”

The fact that astronomers found the planets during the first event that allowed such a detection suggests that these scaled-down versions of our solar system are very common, he added.

Previously, astronomers had found four planets using microlensing; two of those were found by the Ohio State University-based MicroFUN group. The latest two planets make six, and he expects that number to double over the next year as other teams publish new findings.

"We're just getting better at what we do," Gaudi said. "We've hit our stride with this technique."

He has also calculated that the next generation of microlensing experiments -- using telescopes on the ground and in space -- will likely be able to detect analogs to all of our solar system’s planets, except for the tiniest one, Mercury.

The current discovery relied on 11 different ground-based telescopes in countries around the world, including New Zealand, Tasmania, Israel, Chile, the Canary Islands, and the United States.

Both professional and amateur skywatchers joined in. People from three other microlensing collaborations -- the Microlensing Observations in Astrophysics (MOA) Collaboration, the Probing Lensing Anomalies NETwork (PLANET), and the RoboNet Collaboration -- all contributed observations and are co-authors of the study with MicroFUN and OGLE.

Gaudi described this microlensing event as the most complicated one ever studied. The astronomers carefully modeled their data on computers, and explored all possible explanations for the light signal. A year and a half later, they were confident that they’d found two planets. In part, their confidence came from additional observations from the W.M. Keck Observatory in Hawaii, which they used to calculate the mass of the star.

Scott Gaudi | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>