Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the radiation risk to ESA’s astronauts

13.02.2008
European scientists have developed the most accurate method yet for predicting the doses of radiation that astronauts will receive aboard the orbiting European laboratory module, Columbus, attached to the ISS this week.

The new software package accurately simulates the physics of radiation particles passing through spacecraft walls and human bodies. Such techniques will be essential to use for calculating the radiation doses received by astronauts on future voyages to the Moon and Mars.

To predict accurately the radiation risk faced by astronauts, scientists and engineers must tackle three separate problems: How much radiation is hitting the space vehicle? How much of that radiation is blocked by the available shielding? What are the biological effects of the radiation on the astronauts?

This project, funded by ESA’s General Studies Programme and the Swedish National Space Board, mostly concentrates on the second of those questions. It was initiated by Christer Fuglesang of ESA's European Astronaut Corps.

During a stay onboard the ISS in December 2006, he experienced firsthand the effects of space radiation. "You see flashes when you close your eyes as a result of interactions with your eye," he says.

The frequency of these flashes depends on where the ISS is in its orbit and the level of solar activity. There was a solar storm whilst Fuglesang was in space. "That night we were told to sleep in the more shielded sections of the station," he says.

The ESA simulation is called Dose Estimation by Simulation of the International Space Station (ISS) Radiation Environment (DESIRE). "The project was designed to provide a European capability in accurately predicting radiation doses onboard Columbus," says Petteri Nieminen, ESA’s Technical Officer on the study.

The first step was to build a programme that would accurately simulate the physics of radiation passing into a spacecraft and then through a human body. To do this, Tore Ersmark of the Royal Institute of Technology (KTH), Stockholm, Sweden worked with several existing software packages. These included a software toolkit known as Geant4, which simulates the propagation of radiation particles. Geant4 has been successfully used in disciplines such as space physics, medical physics and high-energy physics, and is developed by a large international collaboration involving ESA, CERN, and many other institutes and universities.

One of the lengthiest aspects of the work was that Ersmark had to build from scratch a computer model of the International Space Station itself. The configuration and orientation of the ISS are crucial parameters in defining the amount of matter that radiation passes through.

The Columbus module, launched into space by NASA's Space Shuttle on 7 February, is the most ambitious and sophisticated contribution to human spaceflight that Europe has yet made. It is equipped with radiation monitors to test the DESIRE predictions. "We are really pleased with the results from DESIRE and look forward to comparing them to the actual measurements," says Petteri.

Inside Columbus, during quiet solar times, the radiation levels are expected to be low. "Although they are several hundred times greater than the background radiation level here in Sweden, that is still not dangerous," says Ersmark.

Beyond Columbus, the DESIRE tool can be developed into a European software package that can be used to predict the radiation risks for other manned space flight missions, both close to Earth and beyond the protection of our planet’s magnetic field.

The radiation environment close to Earth consists of three main components: Particles trapped in the Earth’s magnetic field; particles that arrive from deep space called Galactic Cosmic Rays (GCRs) and particles expelled from the Sun during solar eruptions. These components all vary with time, mainly due to the unpredictable activity of the Sun, which influences the Earth’s magnetic field. In turn, the Earth’s field determines the extent of the trapped particles and how well Earth is shielded from incoming GCRs.

Beyond Earth’s magnetic field, spacecraft and their occupants will be exposed to the full force of the GCRs and the solar eruptions. Missions to the Moon and Mars will venture into this harsher and unpredictable radiation environment for periods of many month or even years.

During the Apollo missions of the 1960s–70s, the astronauts were simply lucky not to have been in space during a major solar eruption that would have flooded their spacecraft with deadly radiation. Essentially, they took risks and got away with it. For the kind of long-duration journeys being talked about today, a far more robust system of predicting radiation doses is required.

"The main uncertainties in these calculations are our knowledge of the space radiation environment beyond the Earth’s magnetic field, and the biological response to radiation," says Ersmark.

To provide the environmental information ESA is flying a standard radiation monitor on a number of its spacecraft, including Proba-1, Integral, Rosetta, GIOVE-B, Herschel and Planck. Known as the Standard Radiation Environment Monitor (SREM), it measures high-energy radiation particles. It was developed and manufactured by Oerlikon Space in cooperation with Paul Scherrer Institute, under a development contract from ESA.

Developing the appropriate strategies and countermeasures to deal with the interplanetary radiation hazard is essential. At present it is one of the most difficult challenges to our exploration the wider solar system. Thanks to DESIRE, Europeans have taken a step towards being able to test future space vehicle designs to find those that offer the most protection.

Markus Bauer | alfa
Further information:
http://www.esa.int/esaCP/SEMYYHUHJCF_index_0.html

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>