Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A researcher of UPV/EHU has designed nanomagnets for industry

13.02.2008
The PhD, defended by chemist Sonia Moralejo García at the University of the Basque Country (UPV/EHU), achieved a well-defined line for the manufacture of nanomagnets and other magnetic devices of wide industrial application.

It is well known that current technology tends to design tools that are ever smaller and that nanotechnology, although it its infancy, is a theme that is very much in fashion in our society. Who has not heard of nanotubes, nanoparticles and nanomagnets, etc?

The PhD thesis by Ms Sonia Moralejo García, defended at the Faculty of Science and Technology at the University of the Basque Country (UPV/EHU), used various techniques to analyse the manufacture of nanomagnets and magnetic devices of widespread industrial application.

The PhD entitled, "Nanofabricación y propiedades magnéticas de nanoimanes patronados de películas delgadas "(The nanomanufacture and magnetic properties of nanomagnets patterned with thin films) was led by Professor Fernando Castaño Almendral and doctor Fernando Castaño Sánchez, and obtained excellent cum laude. The researcher has had the advantage of a number of study-stays in various laboratories: the Max Planck Institute of Microstructure Physics in Germany and the Cavendish Laboratory of the University of Cambridge in the United Kingdom which contributed to completing her PhD thesis.

Sonia Moralejo García is a graduate in Chemical Sciences from the University of the Basque Country and currently continues to do her research at the Department of Chemical Sciences at the university.

Data storage

This work in the field of nanotechnology combines two multidisciplinary experimental worlds, the technological and the scientific. The technological is related to the manufacture of nanomagnets and magnetic devices, for which a complete series of techniques have been developed and/or made ready and which enable, from start to finish, the obtaining of samples by conventional methods and of wide industrial application. “Amongst other things, we have created a system for growing a number of materials at the same time, instead of just one at a time” said the researcher. In this PhD, two materials have been mainly employed: Ni-Fe and Co-Fe alloys.

Their magnetic behaviour has been studied, both as continuous layers and as samples of smaller size (threads, circles, ellipses), varying their shape and distances, given that they have different behaviour patterns – knowing these is essential for the different applications.

The magnetic behaviour of these materials was studied using hysteresis. Such magnetic behaviour enables the storage of computer hard discs in magnets: the magnetic field induces a magnetising of the small magnet – codified in a binary manner as either 0 or 1 -; this codification remains in the absence of the magnetic field and can be read subsequently, but it can also be inverted, applying a magnetic field in the opposite sense.

As we have mentioned, the main applications of this type of nanomagnets and magnetic devices are focused on the field of storage and data treatment, hard discs, etc.

The manufacture of nanomagnets and magnetic devices at a small scale has enabled having samples available and tackle problems of great current interest in the field of nanomagnetism.

Although the beginning of this thesis was somewhat difficult, given that what was involved was a new line of research for the Department of Physical Chemistry at the UPV/EHU, forthwith they will try to design and install new techniques and carry out trials on a wider range of materials.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1630&hizk=I

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>