Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A researcher of UPV/EHU has designed nanomagnets for industry

13.02.2008
The PhD, defended by chemist Sonia Moralejo García at the University of the Basque Country (UPV/EHU), achieved a well-defined line for the manufacture of nanomagnets and other magnetic devices of wide industrial application.

It is well known that current technology tends to design tools that are ever smaller and that nanotechnology, although it its infancy, is a theme that is very much in fashion in our society. Who has not heard of nanotubes, nanoparticles and nanomagnets, etc?

The PhD thesis by Ms Sonia Moralejo García, defended at the Faculty of Science and Technology at the University of the Basque Country (UPV/EHU), used various techniques to analyse the manufacture of nanomagnets and magnetic devices of widespread industrial application.

The PhD entitled, "Nanofabricación y propiedades magnéticas de nanoimanes patronados de películas delgadas "(The nanomanufacture and magnetic properties of nanomagnets patterned with thin films) was led by Professor Fernando Castaño Almendral and doctor Fernando Castaño Sánchez, and obtained excellent cum laude. The researcher has had the advantage of a number of study-stays in various laboratories: the Max Planck Institute of Microstructure Physics in Germany and the Cavendish Laboratory of the University of Cambridge in the United Kingdom which contributed to completing her PhD thesis.

Sonia Moralejo García is a graduate in Chemical Sciences from the University of the Basque Country and currently continues to do her research at the Department of Chemical Sciences at the university.

Data storage

This work in the field of nanotechnology combines two multidisciplinary experimental worlds, the technological and the scientific. The technological is related to the manufacture of nanomagnets and magnetic devices, for which a complete series of techniques have been developed and/or made ready and which enable, from start to finish, the obtaining of samples by conventional methods and of wide industrial application. “Amongst other things, we have created a system for growing a number of materials at the same time, instead of just one at a time” said the researcher. In this PhD, two materials have been mainly employed: Ni-Fe and Co-Fe alloys.

Their magnetic behaviour has been studied, both as continuous layers and as samples of smaller size (threads, circles, ellipses), varying their shape and distances, given that they have different behaviour patterns – knowing these is essential for the different applications.

The magnetic behaviour of these materials was studied using hysteresis. Such magnetic behaviour enables the storage of computer hard discs in magnets: the magnetic field induces a magnetising of the small magnet – codified in a binary manner as either 0 or 1 -; this codification remains in the absence of the magnetic field and can be read subsequently, but it can also be inverted, applying a magnetic field in the opposite sense.

As we have mentioned, the main applications of this type of nanomagnets and magnetic devices are focused on the field of storage and data treatment, hard discs, etc.

The manufacture of nanomagnets and magnetic devices at a small scale has enabled having samples available and tackle problems of great current interest in the field of nanomagnetism.

Although the beginning of this thesis was somewhat difficult, given that what was involved was a new line of research for the Department of Physical Chemistry at the UPV/EHU, forthwith they will try to design and install new techniques and carry out trials on a wider range of materials.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1630&hizk=I

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>