Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers hear the sound of quantum drums

12.02.2008
Forty years ago, mathematician Mark Kac asked the theoretical question, "Can one hear the shape of a drum?"

If drums of different shapes always produce their own unique sound spectrum, then it should be possible to identify the shape of a specific drum merely by studying its spectrum, thus "hearing" the drum's shape (a procedure analogous to spectroscopy, the way scientists detect the composition of a faraway star by studying its light spectrum).

But what if two drums of different shapes could emit exactly the same sound? If so, it would be impossible to work backward from the spectrum and uniquely surmise the physical structure of the drum, because there would be more than one correct answer to the question.

It took until the 1990s for mathematicians to prove that, in fact, two drums of different shapes could produce the same sound. In other words, you can't hear the shape of a drum. That outcome, which was physically verified in one instance with vibrations on the surface of soap bubbles, raised theoretical questions about spectroscopy.

"This revolutionized our conception of the fundamental connections between shape and sound, but also had profound implications for spectroscopy in general, because it introduced an ambiguity," according to Stanford physicist Hari Manoharan.

For Manoharan, the next step in studying this conundrum was to take the drum question to another level—a much lower level. He and his students investigated the drum question in the quantum realm, where it could have an effect on real nano-electronic systems.

Using a tunneling scanning microscope and two roomfuls of equipment to move around individual carbon monoxide molecules on a copper surface, they built tiny walls only one-molecule high and shaped them into nine-sided enclosures that could resonate like drums (because of the quantum wave/particle duality of the electrons within the enclosure).

Manoharan calls these enclosures quantum drums. Each drum has only 30 or so electrons inside. They are walled in by roughly100 carbon monoxide molecules.

The result? Just as in the normal world, two nanostructures with different shapes can resonate in the same way, a phenomenon known as isospectrality. Manoharan, along with his graduate student Chris Moon and others, published their result in the Feb 8 edition of the journal Science. To reinforce the point, they created a video, complete with two quantum drums beating with the same sound. (The real "sound" is at ultra-high frequencies in the terahertz range; in the video, the sound has been converted to the range of human hearing.)

The practical value of having two different nanostructures with identical properties may lie in the design of ever-smaller computer chip circuits, Manoharan said. Designers of nano-electronic circuits will have two ways to get the same result. "Now your design palette is twice as big," he said.

While the chip industry attempts to shrink existing circuitry, Manoharan is literally coming from the opposite direction. "My research asks, what if you start at the bottom of the ladder? We assemble structures one atom at a time," he said. The unexplored gap between bottom-up research and the industry's shrink-down effort "is where the excitement is," he said.

The work has a natural connection to the problems of quantum computing, he said.

The research may also have connections to string theory, used by cosmologists attempting to understand the structure of the universe, Manoharan said: "There is somehow embedded into the topology of our universe this bizarre spectral ambiguity." String theories describe complex surfaces that are higher-dimensional analogues of these two-dimensional quantum drums.

The drum research has another finding important to the world of quantum mechanics. While it is impossible to directly observe the quantum phase of the wave functions of the electrons inside the drum structure, Manoharan's team has devised a way to extract that information by taking measurements from two isospectral drums and then mathematically combining the information, a process called quantum transplantation.

"We discovered that this extra degree of freedom in geometry provides us with a method to 'cheat' quantum mechanics and obtain normally obscured quantum-mechanical phase information," Manoharan said.

There are other ways to experimentally determine quantum phase information from atoms or molecules in gases, or from quantum dots and rings, all of them relying on a process called interferometry. The addition of a new method, "geometry over interferometry," will benefit researchers, Manoharan said.

The authors of the Science paper, "Quantum Phase Extraction in Isospectral Electronic Nanostructures," in addition to Manoharan and Moon, are graduate students Laila Mattos, Brian Foster, Gabriel Zeltzer and Wonhee Ko.

Funding for the research came from the National Science Foundation, the U.S. Department of Energy and the Office of Naval Research.

Dan Stober | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>