Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nuclear “Eye” Reveals that Napoleon was Not Poisoned

Arsenic poisoning did not kill Napoleon in Saint Helena, as affirmed by a new meticulous examination performed at the laboratories of the Italian National Institute of Nuclear Physics (INFN) in Milano-Bicocca and Pavia, together with the University of Milano-Bicocca and the University of Pavia.

The physicists performing the study used a small nuclear reactor used exclusively for research purposes at the University of Pavia, applying techniques that were created for the project known as “Cuore” (“Heart”), which is being developed at the INFN’s national laboratories in Gran Sasso.

The research, the results of which will be published in the journal “Il Nuovo Saggiatore”, was performed on hair samples that had been taken during different periods of Napoleon Bonaparte’s life, from when he was a boy in Corsica, during his exile on the Island of Elba, on the day of his death (May 5, 1821) on the Island of Saint Helena, and on the day after his death. Samples taken from the King of Rome (Napoleon’s son) in the years 1812, 1816, 1821, and 1826, and samples from the Empress Josephine, collected upon her death in 1814, were also analysed. The hair samples were provided by the Glauco-Lombardi Museum in Parma (Italy), the Malmaison Museum in Paris, and the Napoleonic Museum in Rome. In addition to these “historical” hair samples, 10 hairs from living persons were examined for comparison purposes.

The hairs were placed in capsules and inserted in the core of the nuclear reactor in Pavia. The technique used is known as “neutron activation”, which has two enormous advantages: it does not destroy the sample and it provides extremely precise results even on samples with an extremely small mass, such as human hair samples. Using this technique, the researchers have established that all of the hair samples contained traces of arsenic. The researchers chose to test for arsenic in particular because for a number of years various historians, scientists, and writers have hypothesized that Napoleon was poisoned by guards during his imprisonment in Saint Helena following the Battle of Waterloo.

The examination produced some surprising results. First of all, the level of arsenic in all of the hair samples from 200 years ago is 100 times greater than the average level detected in samples from persons living today. In fact, the Emperor’s hair had an average arsenic level of around ten parts per one million whereas the arsenic level in the hair samples from currently living persons was around one tenth of a part per one million. In other words, at the beginning of the 19th people evidently ingested arsenic that was present in the environment in quantities that are currently considered as dangerous.

The other surprise regards the finding that there were no significant differences in arsenic levels between when Napoleon was a boy and during his final days in Saint Helena. According to the researchers, and in particular the toxicologists who participated in the study, it is evident that this was not a case of poisoning but instead the result of the constant absorption of arsenic.

Eleonora Cossi | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>