Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southampton students create STORM in space

08.02.2008
A flight instrument designed and developed by research students at the University of Southampton is going into orbit on the space shuttle Atlantis, due to be launched today from the Kennedy Space Center in Cape Canaveral, Florida.

The Southampton Transient Oxygen and Radiation Monitor (STORM) instrument is destined for the International Space Station where it will be used in an experiment called MEDET (Materials Exposure and Degradation Experiment on EuTEF). The experiment aims to measure how the hostile space environment affects materials used to construct spacecraft.

These materials, particularly polymers which are often used to form insulation blankets on spacecraft for example, suffer damage from the combined effects of solar radiation, micrometeroid and space debris impact, and from exposure to atomic oxygen, which is the primary constituent of the Earth's residual atmosphere in low Earth orbit. STORM will monitor the concentration of atomic oxygen (AO) and the flux of solar X-ray and ultra-violet radiation.

Once operational, STORM will send back data at regular intervals so that the changes in the AO and X-ray/UV levels can be monitored over time. After two or three years of exposure to the space environment, the experiment will be returned to Earth for analysis and interpretation by the Southampton researchers, who will determine the effect of the exposure on the materials and instruments contained on board.

Design work on the instrument, which is a cube measuring approximately 15 centimetres on each side with a mass of approximately 1 kilogram, began in 2001 with funding from the Engineering and Physical Sciences Research Council.

STORM was developed by staff from three School of Engineering Sciences research groups, including Professor Stephen Gabriel from Astronautics; Dr Graham Roberts from Aerodynamics and Flight Mechanics and Dr Alan Chambers from Engineering Materials, together with colleague Dr Neil Ross from the School of Electronics and Computer Science. Ken Lawson and Dr Jeff Rao of the School of Applied Sciences at Cranfield University were also involved in the fabrication of some of the sensors.

Most of the design and development work was carried out by two Engineering Sciences research students, Duncan Goulty and Carl White, both of whom have now been awarded their PhDs. Several undergraduate students also took part in the development of STORM by carrying out project work as part of their studies.

The MEDET experiment is part of an international project between the University of Southampton's Schools of Engineering Sciences and Electronics and Computer Science; the European Space Agency (ESA); the French Space Agency (CNES), and the French Aerospace Laboratory (ONERA).

Today's shuttle launch is due to take place at 7.45pm GMT (2.45 pm Eastern Standard Time), although it may be delayed until tomorrow Friday 8 February if bad weather moves in.

Sue Wilson | alfa
Further information:
http://www.nasa.gov/mission_pages/station/science/experiments/MEDET.html

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>