Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express has the sophisticated science to find the water ice on Mars

31.05.2002


Artist’s impression of water under the Martian surface (ESA 2001. Illustration by Medialab)


Instruments on the Mars Express orbiter can observe selected areas of the Martian surface (ESA 2001. Illustration by Medialab)


"The presence of such a large amount of water ice under Mars`s surface is very surprising. Especially so close to the surface!" says Gerhard Schwehm, Head of the Planetary Missions Division at ESA. The team working on ESA`s Mars Express, the next mission to the Red Planet, is thrilled by NASA`s Mars Odyssey detection of hydrogen-rich layers under the Martian surface. This hydrogen indicates the presence of water ice in the top surface of the Martian soil in a large region surrounding the planet`s south pole. ESA`s Mars Express, ready for launching in June 2003, has the tools for searching much deeper below the surface, down to a few kilometres.

"Mars Express will give a more global picture of where the water is and how deep," says Patrick Martin, ESA deputy project scientist for the Mars Express mission.

The radar sounder on board Mars Express, MARSIS, will map the subsurface structure from a depth of about a hundred metres to as much as a few kilometres. This is in contrast with the Mars Odyssey, which can sense surface compositions to a depth of only one metre.



The cameras on Mars Express will map the minerals at a very high resolution and report how they are distributed on the Martian surface. This kind of data is crucial to understand the distribution of subsurface water. The other four instruments on board Mars Express (seven in total) will observe the atmosphere and reveal processes by which water vapour and other atmospheric gases could have escaped into space.

Knowing about the water distribution on and under the surface of Mars is essential, since water is needed for the appearance of life. Also, water distribution will help understand the geological history of the planet, and ultimately provide new clues about formation of our Solar System and evolution of Earth. Moreover, the presence of water puts mankind a step closer to the human exploration of the Red Planet. In its exciting Aurora programme, ESA is considering systems that could be used in future extraterrestrial human colonies or stations.

Search for life

Mars Express will also deploy a lander on Mars, called Beagle 2. Beagle 2 will parachute down to the Martian surface, probably close to the equator, and is especially equipped to look for signatures of life. It will do so both on and below the surface, since Mars`s harsh atmosphere would almost certainly have destroyed any evidence for life on the surface. Beagle 2 will use a `mole` to retrieve samples of soil to a depth of 1.5 metres, and will become the first lander to look directly for evidences of life on the Red Planet since NASA`s Viking in 1976.


Clovis De Matos | alphagalileo
Further information:
http://sci.esa.int

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>