Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas 'finger' points to galaxies' future

05.02.2008
Like a fork piercing a fried egg, a giant finger of hydrogen gas is poking through our Milky Way Galaxy from outside, astronomers using CSIRO radio telescopes at Parkes and Narrabri have found.

The location of the intrusion may give a crucial clue to the fate of the little galaxies the gas flows from, the Large and Small Magellanic Clouds.

“We’re thrilled because we can determine exactly where this gas is ploughing into the Milky Way – it’s usually extremely hard to get distances to such gas features,” said the research team leader, Dr Naomi McClure-Griffiths of CSIRO’s Australia Telescope National Facility.

The gas finger, called HVC306-2+230, is running into the starry disk of our Galaxy about 70 thousand light-years (21kpc) away from us. On the sky, the point of contact is near the Southern Cross.

The finger is the pointy end of the so-called Leading Arm of gas that streams ahead of the Magellanic Clouds towards the Milky Way.

Until last year, astronomers generally thought that the Magellanic Clouds had orbited our Galaxy many times, and were doomed to be ripped apart and swallowed by their gravitational overlord.

But then new Hubble Space Telescope measurements showed the Clouds were moving much faster than previously thought. In turn, this implied that the Clouds are paying our Galaxy a one-time visit rather than being its long-term companions.

Knowing where the Leading Arm is crossing the Galactic Disk may help astronomers to predict where the Clouds themselves will go in future.

“We think the Leading Arm is a tidal feature, gas pulled out of the Magellanic Clouds by the Milky Way’s gravity,” said Dr McClure-Griffiths.

“Where this gas goes, we’d expect the Clouds to follow, at least approximately.”

The team’s measurement of where the Leading Arm intrudes into the Milky Way is more in line with the models that assume the Magellanic Clouds have been orbiting our Galaxy than with the models that have the Clouds just passing by.

Dr McClure-Griffiths cautions that this is not the final word on the subject, saying that the latter models were far from ruled out.

But the new result suggests that the Magellanic Clouds will eventually merge with the Milky Way, rather than zooming past.

Andrea Wild | EurekAlert!
Further information:
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>