Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas 'finger' points to galaxies' future

05.02.2008
Like a fork piercing a fried egg, a giant finger of hydrogen gas is poking through our Milky Way Galaxy from outside, astronomers using CSIRO radio telescopes at Parkes and Narrabri have found.

The location of the intrusion may give a crucial clue to the fate of the little galaxies the gas flows from, the Large and Small Magellanic Clouds.

“We’re thrilled because we can determine exactly where this gas is ploughing into the Milky Way – it’s usually extremely hard to get distances to such gas features,” said the research team leader, Dr Naomi McClure-Griffiths of CSIRO’s Australia Telescope National Facility.

The gas finger, called HVC306-2+230, is running into the starry disk of our Galaxy about 70 thousand light-years (21kpc) away from us. On the sky, the point of contact is near the Southern Cross.

The finger is the pointy end of the so-called Leading Arm of gas that streams ahead of the Magellanic Clouds towards the Milky Way.

Until last year, astronomers generally thought that the Magellanic Clouds had orbited our Galaxy many times, and were doomed to be ripped apart and swallowed by their gravitational overlord.

But then new Hubble Space Telescope measurements showed the Clouds were moving much faster than previously thought. In turn, this implied that the Clouds are paying our Galaxy a one-time visit rather than being its long-term companions.

Knowing where the Leading Arm is crossing the Galactic Disk may help astronomers to predict where the Clouds themselves will go in future.

“We think the Leading Arm is a tidal feature, gas pulled out of the Magellanic Clouds by the Milky Way’s gravity,” said Dr McClure-Griffiths.

“Where this gas goes, we’d expect the Clouds to follow, at least approximately.”

The team’s measurement of where the Leading Arm intrudes into the Milky Way is more in line with the models that assume the Magellanic Clouds have been orbiting our Galaxy than with the models that have the Clouds just passing by.

Dr McClure-Griffiths cautions that this is not the final word on the subject, saying that the latter models were far from ruled out.

But the new result suggests that the Magellanic Clouds will eventually merge with the Milky Way, rather than zooming past.

Andrea Wild | EurekAlert!
Further information:
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>