Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particle accelerator may reveal shape of alternate dimensions

04.02.2008
When the world's most powerful particle accelerator starts up later this year, exotic new particles may offer a glimpse of the existence and shapes of extra dimensions.

Researchers from the University of Wisconsin-Madison and the University of California-Berkeley say that the telltale signatures left by a new class of particles could distinguish between possible shapes of the extra spatial dimensions predicted by string theory.

String theory, which describes the fundamental particles of the universe as tiny vibrating strings of energy, suggests the existence of six or seven unseen spatial dimensions in addition to the time and three space dimensions that we normally see.

Much as the shape of a musical instrument determines its sound, the shape of these dimensions determines the properties and behavior of our four-dimensional universe, says Gary Shiu, lead author of a paper appearing in the Jan. 25 issue of Physical Review Letters.

"The shape of the dimensions is crucial because, in string theory, the way the string vibrates determines the pattern of particle masses and the forces that we feel," says the UW-Madison physics professor.

Zeroing in on that shape should further our understanding and predictions of our four-dimensional world, Shiu says. "There are myriad possibilities for the shapes of the extra dimensions out there. It would be useful to know a way to distinguish one from another and perhaps use experimental data to narrow down the set of possibilities."

Such experimental evidence could appear in data from a new particle accelerator, the Large Hadron Collider, scheduled to begin operating later this year near Geneva, Switzerland.

In an accelerator, smashing atomic nuclei head-on at nearly the speed of light can briefly create new high-energy and highly unstable particles, which quickly decay into a shower of detectable lower energy ones. Characteristic patterns of decay serve as fingerprints of the fleeting exotic particles and, possibly, the shape of the unseen dimensions.

With colleagues Bret Underwood and Kathryn Zurek at UW-Madison and Devin Walker at UC-Berkeley, Shiu shows in the new study that the signature patterns from particles called Kaluza-Klein (KK) gravitons can distinguish between different proposed extra-dimensional geometries.

How" Shiu compares the effect to a darkened room in which patterns of sound resonating off the walls can reveal the shape of the room. Similarly, KK gravitons are sensitive to the extra-dimensional shape and, through their behavior and decay, may reveal clues to that shape.

The current study shows that, in simulations, even small geometric variations lead to visible differences in KK graviton signatures, Underwood says.

Based on these results, Shiu says, "At least in principle, one may be able to use experimental data to test and constrain the geometry of our universe."

Last year, Shiu and Underwood reported that clues to dimensional geometries might also be visible in patterns of cosmic radiation left over from the Big Bang. The new work complements the previous approach, they say.

"The more hints we get, the better idea we have about the underlying physics," says Shiu.

Adds Underwood, "If the cosmology and particle physics data agree, it's an indication we're on the right track."

Gary Shiu | EurekAlert!
Further information:
http://www.physics.wisc.edu

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>