Cool spacedust survey goes into orbit

The Herschel Space Observatory, launched by the European Space Agency this Summer, promises to take our knowledge of the far reaches of space to a new level. It will have the largest mirror of any space telescope — twice the size of the famous Hubble — that will detect the ‘glow’ of spacedust at around -250C, rather than the light from stars.

As well as being able to see star-forming regions very nearby in our own galaxy, it will be able to see galaxies forming when the universe was in its infancy, more than ten billion years ago.

The University of Nottingham is a leading partner in this new survey using Herschel, which is the first space telescope to operate in the sub-millimetre part of the spectrum, between the far-infrared and microwaves. Much of this light — 0.055 to 0.67 mm in wavelength — cannot penetrate the atmosphere and so the only way to study it is from space.

Dr Loretta Dunne, of The University of Nottingham’s School of Physics and Astronomy, is leading the working group on dust in local galaxies. Dr Dunne said: “The survey will be a quantum leap in our understanding of dust in the local Universe.

“Cosmic dust is more than just a nuisance to optical astronomers. It also plays an important role in helping hot gas to cool and collapse to form galaxies and stars, and is the raw building material for planets like our own. The Earth is really a giant ball of cosmic dust! Discovering how dust is created, how long it survives and how much of it is out there, are important pieces of the puzzle of how the Universe came to look the way it does.”

Dr Steve Maddox, also at The University of Nottingham, is the co-leader of the programme on large-scale structure.

The telescope is named after renowned astronomer Sir William Herschel (1738–1822), who in 1800 demonstrated the existence of infrared light. He also, among many other discoveries, made the first sighting of the planet Uranus.

Herschel is one of the cornerstone missions of the European Space Agency and will have the largest mirror ever built for a space telescope. At 3.5 metres in diameter, the mirror will collect long-wavelength radiation from some of the coldest and most distant objects in the Universe.

Herschel’s size and capabilities mean it will be able to see the ‘stolen’ starlight emitted by cosmic dust in galaxies. Cosmic dust is not like Earthbound dust, but consists instead of tiny particles of carbon and silicates which are made in stars and supernovae and then ‘hang around’ in interstellar space for hundreds of millions of years.

The particles’ very small size — about 800 times smaller than the width of a human hair — makes them exceptionally good at capturing the light from stars, creating the dark patches seen in the Milky Way and other galaxies. The little grains are gently warmed by the starlight they bathe in and the special detectors onboard Herschel will take images of this faint glow, giving us a new view of the cold parts of galaxies.

The survey will be the widest area survey carried out by Herschel and has just been awarded the largest amount of observing time of any open-time project. The observations will take 600 hours spread over the three-year lifetime of the mission.

As it is such a large survey, it has many things to investigate, such as:
•the 'stolen' starlight in over 100,000 galaxies, absorbed by dust and re-radiated at the longer wavelengths only Herschel can see;
•rare gravitational lenses, where the warped space around a foreground galaxy is magnifying a background galaxy;
•'frustrated' galaxy birth: primeval galaxies with giant black holes which are trying to shut off the birth of the rest of their galaxy;

•how the birth of dust and stars in local galaxies depends on their environment – nature or nurture?

The survey is being conducted by a large international consortium, led jointly by the Universities of Nottingham and Cardiff.

The UK is leading one of the instruments on Herschel. More details of the important UK roles in this mission can be found at http://www.so.stfc.ac.uk/roadmap/rmProject.aspx?q=52

Herschel is due to be launched on an Ariane-5 rocket from the Guiana Space Centre, Kourou, French Guiana, in July 2008. More details on Herschel can be found at:

http://sci.esa.int/science-e/www/area/index.cfm?fareaid=16

Media Contact

Emma Thorne alfa

More Information:

http://www.nottingham.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors