Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How is that whale listening?

04.02.2008
Researchers from San Diego State University and the University of California have been using computer models to mimic the effects of underwater noise on an unusual whale species and have discovered a new pathway for sound entering the head and ears.

Advances in Finite Element Modeling (FEM), Computed tomography (CT) scanning, and computer processing have made it possible to simulate the environment and anatomy of a Cuvier’s beaked whale when a sonar signal is sent out or received by the whale.

The research paper, published today, Monday, February 4, 2008, in the Institute of Physics’ Journal, Bioinspiration & Biomimetics, is a catalyst for future research that could end years of speculation about the effects of underwater sound on marine mammals.

FEM is a technique borrowed from engineering used, for example, to simulate the effect of an earthquake on a building. By inputting the exact geometry and physical properties of a building the effect of forces such as an earthquake, or in this case noise vibrations, can be accurately predicted.

Dr Cranford of San Diego State University triggered the research into Cuvier’s beaked whales almost ten years ago when he undertook the first ever CT scan of a large whale, which provided researchers with the very complex anatomic geometry of a sperm whale’s head.

Dr Cranford said, “I think that the methods developed for this research have the potential to revolutionize our understanding of the impact of noise on marine organisms."

Since 1968, it has been believed that noise vibrations travel through the thin bony walls of toothed whales’ lower jaw and onto the fat body attached to the ear complex. This research shows however that the thin bony walls do not transmit the vibrations. In fact they enter through the throat and then pass to the bony ear complex via a unique fatty channel.

Despite the Cuvier’s beaked whale being a rare and little-known specie, Dr Cranford and his team started the work on it because over recent years there have been instances when this type of whale has stranded after exposure to intense sound, making them an ideal starting point for research into underwater communication.

Charlie Wallace | alfa
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>