Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Bacterium to Semiconductor

01.02.2008
Proteins of photosynthetic bacteria can be used to generate photocurrent. How to do that – this can be learnt from the article by Russian researchers.

Researchers from different countries are accommodating to their purposes proteins of photosynthesis system bacteria. They are used as an active component of the photocurrent generation chain in the sensory and energy-storing systems.

In Russia, the problem is being addressed by specialists of the Lomonosov Moscow State University, Institute of Problems of Chemical Physics (Russian Academy of Sciences), Moscow Institute of Applied-Physics and the Institute of Chemical Physics (Russian Academy of Sciences). The researchers built proteins of reactionary center for purple bacteria photosynthesis into porous nano-crystalline films of titanium oxide.

Proteins of the photosynthesis system (bacteriochlorophyll, bacteriopheophytin and ubiquinones) – are natural solar energy bioaccumulators. Excited bacteriochlorophyll molecule transmits electron along the chain to other proteins of photosystem. These proteins attract attention of biophysicists due to high quantum yield of reaction of primary charge division and relative stability of these charges. As of today, there exist two different approaches to creation of hybrid light-storing and sensitive devices based on bacterial proteins. For elements of the first type, a layer of photosensitive molecules are applied on a metal (golden or platinum) or graphite plate. At that, the proteins should be orientated on the plate surface in a certain way. Depending on the protein disposition on the electrode, there occurs either a cathodic charge (in this case, the electron is carried from the electrode to proteins), or an anodic charge, if there occurs reverse direction current.

In the devices of the second type, the proteins are applied on meso-porous semicoductors made of metal oxide. In such systems, excited protein molecules transmit very quickly, within fractions of a picosecond, an electron into the semiconductor’s conduction band. Besides, the pores are so tightly stuffed with proteins, that the special procedure of their orientation may be omitted. Proteins will get orientated spontaneously on the electrode hydrophobic surface, the donor section being turned to the semiconductor.

The photocurrent density is directly dependent on both the porous film structure and on the quantity of protein molecules on the electrode. Therefore, the Russian researchers tried to obtain thick film (4 micrometers thick) made of titanium o?ide. The researchers selected a structure which is optimal to maximum protein sorbtion.

The TiO2 meso-porous films are obtained from nano-crystalline powders, which are added into special paste. They were applied on glass with a conducting covering of titanium- indium oxide. The film was dried up and calcined for 30-60 minutes at 550 degrees. Calcination adds mechanical strength to films. Then the plate was soaked in the photosynthetic proteins solution, and the main electrode was ready. The researchers managed to get a film with small pores and large specific surface area (300 m2/g). Thanks to the film depth and porosity, a lot of proteins get stuck to it, their concentration in the sample being 160 times higher than that in the solution. Proteins on the main electrode preserve activity even after the two week keeping in a refrigerator. Illuminating the electrode by red light, which only proteins react to, generates the anodic photocurrent of almost 2 microamperes. Titanium o?ide also reacts to white light, but presence of the photosynthesis system proteins in the electrode increases the photocurrent by more than twice.

The researchers note that nano-porous semiconductors possess not only a very high sorbing ability, but also tremendous energy diversity of surface states, which significantly impacts the electron transmission process.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>