Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Bacterium to Semiconductor

01.02.2008
Proteins of photosynthetic bacteria can be used to generate photocurrent. How to do that – this can be learnt from the article by Russian researchers.

Researchers from different countries are accommodating to their purposes proteins of photosynthesis system bacteria. They are used as an active component of the photocurrent generation chain in the sensory and energy-storing systems.

In Russia, the problem is being addressed by specialists of the Lomonosov Moscow State University, Institute of Problems of Chemical Physics (Russian Academy of Sciences), Moscow Institute of Applied-Physics and the Institute of Chemical Physics (Russian Academy of Sciences). The researchers built proteins of reactionary center for purple bacteria photosynthesis into porous nano-crystalline films of titanium oxide.

Proteins of the photosynthesis system (bacteriochlorophyll, bacteriopheophytin and ubiquinones) – are natural solar energy bioaccumulators. Excited bacteriochlorophyll molecule transmits electron along the chain to other proteins of photosystem. These proteins attract attention of biophysicists due to high quantum yield of reaction of primary charge division and relative stability of these charges. As of today, there exist two different approaches to creation of hybrid light-storing and sensitive devices based on bacterial proteins. For elements of the first type, a layer of photosensitive molecules are applied on a metal (golden or platinum) or graphite plate. At that, the proteins should be orientated on the plate surface in a certain way. Depending on the protein disposition on the electrode, there occurs either a cathodic charge (in this case, the electron is carried from the electrode to proteins), or an anodic charge, if there occurs reverse direction current.

In the devices of the second type, the proteins are applied on meso-porous semicoductors made of metal oxide. In such systems, excited protein molecules transmit very quickly, within fractions of a picosecond, an electron into the semiconductor’s conduction band. Besides, the pores are so tightly stuffed with proteins, that the special procedure of their orientation may be omitted. Proteins will get orientated spontaneously on the electrode hydrophobic surface, the donor section being turned to the semiconductor.

The photocurrent density is directly dependent on both the porous film structure and on the quantity of protein molecules on the electrode. Therefore, the Russian researchers tried to obtain thick film (4 micrometers thick) made of titanium o?ide. The researchers selected a structure which is optimal to maximum protein sorbtion.

The TiO2 meso-porous films are obtained from nano-crystalline powders, which are added into special paste. They were applied on glass with a conducting covering of titanium- indium oxide. The film was dried up and calcined for 30-60 minutes at 550 degrees. Calcination adds mechanical strength to films. Then the plate was soaked in the photosynthetic proteins solution, and the main electrode was ready. The researchers managed to get a film with small pores and large specific surface area (300 m2/g). Thanks to the film depth and porosity, a lot of proteins get stuck to it, their concentration in the sample being 160 times higher than that in the solution. Proteins on the main electrode preserve activity even after the two week keeping in a refrigerator. Illuminating the electrode by red light, which only proteins react to, generates the anodic photocurrent of almost 2 microamperes. Titanium o?ide also reacts to white light, but presence of the photosynthesis system proteins in the electrode increases the photocurrent by more than twice.

The researchers note that nano-porous semiconductors possess not only a very high sorbing ability, but also tremendous energy diversity of surface states, which significantly impacts the electron transmission process.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>