Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Bacterium to Semiconductor

01.02.2008
Proteins of photosynthetic bacteria can be used to generate photocurrent. How to do that – this can be learnt from the article by Russian researchers.

Researchers from different countries are accommodating to their purposes proteins of photosynthesis system bacteria. They are used as an active component of the photocurrent generation chain in the sensory and energy-storing systems.

In Russia, the problem is being addressed by specialists of the Lomonosov Moscow State University, Institute of Problems of Chemical Physics (Russian Academy of Sciences), Moscow Institute of Applied-Physics and the Institute of Chemical Physics (Russian Academy of Sciences). The researchers built proteins of reactionary center for purple bacteria photosynthesis into porous nano-crystalline films of titanium oxide.

Proteins of the photosynthesis system (bacteriochlorophyll, bacteriopheophytin and ubiquinones) – are natural solar energy bioaccumulators. Excited bacteriochlorophyll molecule transmits electron along the chain to other proteins of photosystem. These proteins attract attention of biophysicists due to high quantum yield of reaction of primary charge division and relative stability of these charges. As of today, there exist two different approaches to creation of hybrid light-storing and sensitive devices based on bacterial proteins. For elements of the first type, a layer of photosensitive molecules are applied on a metal (golden or platinum) or graphite plate. At that, the proteins should be orientated on the plate surface in a certain way. Depending on the protein disposition on the electrode, there occurs either a cathodic charge (in this case, the electron is carried from the electrode to proteins), or an anodic charge, if there occurs reverse direction current.

In the devices of the second type, the proteins are applied on meso-porous semicoductors made of metal oxide. In such systems, excited protein molecules transmit very quickly, within fractions of a picosecond, an electron into the semiconductor’s conduction band. Besides, the pores are so tightly stuffed with proteins, that the special procedure of their orientation may be omitted. Proteins will get orientated spontaneously on the electrode hydrophobic surface, the donor section being turned to the semiconductor.

The photocurrent density is directly dependent on both the porous film structure and on the quantity of protein molecules on the electrode. Therefore, the Russian researchers tried to obtain thick film (4 micrometers thick) made of titanium o?ide. The researchers selected a structure which is optimal to maximum protein sorbtion.

The TiO2 meso-porous films are obtained from nano-crystalline powders, which are added into special paste. They were applied on glass with a conducting covering of titanium- indium oxide. The film was dried up and calcined for 30-60 minutes at 550 degrees. Calcination adds mechanical strength to films. Then the plate was soaked in the photosynthetic proteins solution, and the main electrode was ready. The researchers managed to get a film with small pores and large specific surface area (300 m2/g). Thanks to the film depth and porosity, a lot of proteins get stuck to it, their concentration in the sample being 160 times higher than that in the solution. Proteins on the main electrode preserve activity even after the two week keeping in a refrigerator. Illuminating the electrode by red light, which only proteins react to, generates the anodic photocurrent of almost 2 microamperes. Titanium o?ide also reacts to white light, but presence of the photosynthesis system proteins in the electrode increases the photocurrent by more than twice.

The researchers note that nano-porous semiconductors possess not only a very high sorbing ability, but also tremendous energy diversity of surface states, which significantly impacts the electron transmission process.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>