Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian “Laska” Laser to Measure Particles

01.02.2008
Researchers from St. Petersburg have designed and produced a device that enables to promptly and accurately identify the sizes of micro- and nano-particles. The laser ray illuminates the object in the device so that to judge about the particle sizes by intensity of light diffused by the particles.

Specialists of the St. Petersburg Research-and-Production Firm for Analytical Instrument-Making (LUMEX) demonstrated a device that had been long awaited by representatives of various areas of science and engineering. This is the so-called laser analyzer of particle sizes – a device that enables to promptly and accurately identify the sizes of microscopic particles and to distribute them by sizes. In other words, the analyzer helps to measure not only the average diameter of particles, but also to determine the quantity of particles of a certain size in the mixture.

The device operates as follows. The sample is poured into a transparent cuvette. This can be a suspended matter of smallest particles or emulsion – that does not matter. As solid particles (more than a micron in size) usually accumulate rather quickly at the bottom, the sample in the cuvette is being constantly agitated by a special stirrer, at that, the rate of stirring may be, if needed, very high – more than a thousand revolutions per minute. The stirrer is designed in such a way that no gas holes occur in the analyzable medium, which could impede the analysis. However, the stirrer may not be switched on – then there is an opportunity to track for example the speed of precipitation of particles of different sizes.

The cuvette is illuminated by a laser ray. Microparticles diffuse its light, with the angle of deflection being determined by the size of each particle. The multielement detector records this scattered radiation, thus allowing to measure intensity of beaming at different angles of deflection. Certainly, it is impossible to “pull out” the information on the particle sizes directly from this data, but the light diffusion theory has already been developed for this purpose – “three-story” equations comprehensible only for specialists, which are not needed to others for the most part. It is sufficient for the users to know that the particle size is promptly and accurately calculated in such a way by the computer, certainly with the help of the software also developed by the LUMEX specialists. The only assumption to be kept in mind is that the particle size is determined by the so-called “hydrodynamic radius” – a “fur coat” consisting of water molecules, ions or some molecules adjacent to the particle and moving together with the particle. So, the size determined for some particles via this method is bigger than it would be seen under the microscope – however, in this case it is needed to compare once the particle analysis results obtained through independent methods and to apply the necessary correction later on. This is always the case with determining the sizes by the laser light diffusion method, though.

It should be noted that till recently the device (called “Laska” by the designers) was intended for analysis of rather big particles, their diameter being no less than a micron. This niche at the analytical instrument-making market was not practically filled – as a rule, the task was solved either with the help of a microscope, which is rather labor-intensive and not always possible, or with the help of highly specialized devices, for example, blood cell counters. As for the nano-range sizes, i.e. the particles smaller than a micron, there existed only one device for them – the so-called nanosizer, the device being good and operating based on the same principle of laser light diffusion, but it is so expensive that there are only few of them available in Moscow .

“Our device already enables to perform analysis of particles of up to 500 nanometers in size, i.e., up to half a micron, says Vladimir Krivoshlyk, one of the developers, head of the group, dispersion department, LUMEX. However, we are working now on the analyzer modification, which would allow to measure sizes of smaller particles. We know already how to do this.”

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>