Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian “Laska” Laser to Measure Particles

01.02.2008
Researchers from St. Petersburg have designed and produced a device that enables to promptly and accurately identify the sizes of micro- and nano-particles. The laser ray illuminates the object in the device so that to judge about the particle sizes by intensity of light diffused by the particles.

Specialists of the St. Petersburg Research-and-Production Firm for Analytical Instrument-Making (LUMEX) demonstrated a device that had been long awaited by representatives of various areas of science and engineering. This is the so-called laser analyzer of particle sizes – a device that enables to promptly and accurately identify the sizes of microscopic particles and to distribute them by sizes. In other words, the analyzer helps to measure not only the average diameter of particles, but also to determine the quantity of particles of a certain size in the mixture.

The device operates as follows. The sample is poured into a transparent cuvette. This can be a suspended matter of smallest particles or emulsion – that does not matter. As solid particles (more than a micron in size) usually accumulate rather quickly at the bottom, the sample in the cuvette is being constantly agitated by a special stirrer, at that, the rate of stirring may be, if needed, very high – more than a thousand revolutions per minute. The stirrer is designed in such a way that no gas holes occur in the analyzable medium, which could impede the analysis. However, the stirrer may not be switched on – then there is an opportunity to track for example the speed of precipitation of particles of different sizes.

The cuvette is illuminated by a laser ray. Microparticles diffuse its light, with the angle of deflection being determined by the size of each particle. The multielement detector records this scattered radiation, thus allowing to measure intensity of beaming at different angles of deflection. Certainly, it is impossible to “pull out” the information on the particle sizes directly from this data, but the light diffusion theory has already been developed for this purpose – “three-story” equations comprehensible only for specialists, which are not needed to others for the most part. It is sufficient for the users to know that the particle size is promptly and accurately calculated in such a way by the computer, certainly with the help of the software also developed by the LUMEX specialists. The only assumption to be kept in mind is that the particle size is determined by the so-called “hydrodynamic radius” – a “fur coat” consisting of water molecules, ions or some molecules adjacent to the particle and moving together with the particle. So, the size determined for some particles via this method is bigger than it would be seen under the microscope – however, in this case it is needed to compare once the particle analysis results obtained through independent methods and to apply the necessary correction later on. This is always the case with determining the sizes by the laser light diffusion method, though.

It should be noted that till recently the device (called “Laska” by the designers) was intended for analysis of rather big particles, their diameter being no less than a micron. This niche at the analytical instrument-making market was not practically filled – as a rule, the task was solved either with the help of a microscope, which is rather labor-intensive and not always possible, or with the help of highly specialized devices, for example, blood cell counters. As for the nano-range sizes, i.e. the particles smaller than a micron, there existed only one device for them – the so-called nanosizer, the device being good and operating based on the same principle of laser light diffusion, but it is so expensive that there are only few of them available in Moscow .

“Our device already enables to perform analysis of particles of up to 500 nanometers in size, i.e., up to half a micron, says Vladimir Krivoshlyk, one of the developers, head of the group, dispersion department, LUMEX. However, we are working now on the analyzer modification, which would allow to measure sizes of smaller particles. We know already how to do this.”

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Tunable diamond string may hold key to quantum memory

23.05.2018 | Physics and Astronomy

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>