Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian “Laska” Laser to Measure Particles

01.02.2008
Researchers from St. Petersburg have designed and produced a device that enables to promptly and accurately identify the sizes of micro- and nano-particles. The laser ray illuminates the object in the device so that to judge about the particle sizes by intensity of light diffused by the particles.

Specialists of the St. Petersburg Research-and-Production Firm for Analytical Instrument-Making (LUMEX) demonstrated a device that had been long awaited by representatives of various areas of science and engineering. This is the so-called laser analyzer of particle sizes – a device that enables to promptly and accurately identify the sizes of microscopic particles and to distribute them by sizes. In other words, the analyzer helps to measure not only the average diameter of particles, but also to determine the quantity of particles of a certain size in the mixture.

The device operates as follows. The sample is poured into a transparent cuvette. This can be a suspended matter of smallest particles or emulsion – that does not matter. As solid particles (more than a micron in size) usually accumulate rather quickly at the bottom, the sample in the cuvette is being constantly agitated by a special stirrer, at that, the rate of stirring may be, if needed, very high – more than a thousand revolutions per minute. The stirrer is designed in such a way that no gas holes occur in the analyzable medium, which could impede the analysis. However, the stirrer may not be switched on – then there is an opportunity to track for example the speed of precipitation of particles of different sizes.

The cuvette is illuminated by a laser ray. Microparticles diffuse its light, with the angle of deflection being determined by the size of each particle. The multielement detector records this scattered radiation, thus allowing to measure intensity of beaming at different angles of deflection. Certainly, it is impossible to “pull out” the information on the particle sizes directly from this data, but the light diffusion theory has already been developed for this purpose – “three-story” equations comprehensible only for specialists, which are not needed to others for the most part. It is sufficient for the users to know that the particle size is promptly and accurately calculated in such a way by the computer, certainly with the help of the software also developed by the LUMEX specialists. The only assumption to be kept in mind is that the particle size is determined by the so-called “hydrodynamic radius” – a “fur coat” consisting of water molecules, ions or some molecules adjacent to the particle and moving together with the particle. So, the size determined for some particles via this method is bigger than it would be seen under the microscope – however, in this case it is needed to compare once the particle analysis results obtained through independent methods and to apply the necessary correction later on. This is always the case with determining the sizes by the laser light diffusion method, though.

It should be noted that till recently the device (called “Laska” by the designers) was intended for analysis of rather big particles, their diameter being no less than a micron. This niche at the analytical instrument-making market was not practically filled – as a rule, the task was solved either with the help of a microscope, which is rather labor-intensive and not always possible, or with the help of highly specialized devices, for example, blood cell counters. As for the nano-range sizes, i.e. the particles smaller than a micron, there existed only one device for them – the so-called nanosizer, the device being good and operating based on the same principle of laser light diffusion, but it is so expensive that there are only few of them available in Moscow .

“Our device already enables to perform analysis of particles of up to 500 nanometers in size, i.e., up to half a micron, says Vladimir Krivoshlyk, one of the developers, head of the group, dispersion department, LUMEX. However, we are working now on the analyzer modification, which would allow to measure sizes of smaller particles. We know already how to do this.”

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>