Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The end to a mystery?

01.02.2008
Astronomers at the University of St Andrews believe they can “simplify the dark side of the universe” by shedding new light on two of its mysterious constituents.

Dr HongSheng Zhao, of the University’s School of Physics and Astronomy, has shown that the puzzling dark matter and its counterpart dark energy may be more closely linked than was previously thought.

Only 4% of the universe is made of known material - the other 96% is traditionally labelled into two sectors, dark matter and dark energy.

A British astrophysicist and Advanced Fellow of the UK's Science and Technology Facilities Council, Dr Zhao points out, “Both dark matter and dark energy could be two faces of the same coin.

“As astronomers gain understanding of the subtle effects of dark energy in galaxies in the future, we will solve the mystery of astronomical dark matter at the same time. “

Astronomers believe that both the universe and galaxies are held together by the gravitational attraction of a huge amount of unseen material, first noted by the Swiss astronomer Fritz Zwicky in 1933, and now commonly referred to as dark matter.

Dr Zhao reports that, "Dark energy has already revealed its presence by masking as dark matter 60 years ago if we accept that dark matter and dark energy are linked phenomena that share a common origin.”

In Dr Zhao’s model, dark energy and dark matter are simply different manifestations of the same thing, which he has considered as a ‘dark fluid’. On the scale of galaxies, this dark fluid behaves like matter and on the scale of the Universe overall as dark energy, driving the expansion of the Universe. Importantly, his model, unlike some similar work, is detailed enough to produce the same 3:1 ratio of dark energy to dark matter as is predicted by cosmologists.

Efforts are currently underway to hunt for very massive dark-matter particles with a variety of experiments. The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) in Geneva is a particle accelerator that amongst other objectives, could potentially detect dark matter particles.

According to Dr Zhao, these efforts could turn out to be fruitless. He said, "In this simpler picture of universe, the dark matter would be at a surprisingly low energy scale, too low to be probed by upcoming Large Hadron Collider.

“The search for dark-matter particles so far has concentrated on highly-energetic particles. If dark matter however is a twin phenomenon of dark energy, it will not show up at instruments like the LHC, but has been seen over and over again in galaxies by astronomers."

However, the Universe might be absent of dark-matter particles at all. The findings of Dr Zhao are also compatible with an interpretation of the dark component as a modification of the law of gravity rather than particles or energy.

Dr Zhao concluded. “No matter what dark matter and dark energy are, these two phenomena are likely not independent of each other.”

Julia Maddock | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>