Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism loses under pressure

31.01.2008
Scientists have discovered that the magnetic strength of magnetite—the most abundant magnetic mineral on Earth—declines drastically when put under pressure.

Researchers from the Carnegie Institution’s Geophysical Laboratory, together with colleagues at the Advanced Photon Source of Argonne National Laboratory, have found that when magnetite is subjected to pressures between 120,000 and 160,000 times atmospheric pressure its magnetic strength declines by half. They discovered that the change is due to what is called electron spin pairing.

Magnetism comes from unpaired electrons in magnetic materials. The strength of a magnet is a result of the spin of unpaired electrons and how the spins of different electrons are aligned with one another. This research showed that the drop in magnetism was due to a decrease in the number of unpaired electrons.

“Magnetite is found in small quantities in certain bacteria, in brains of some birds and insects, and even in humans,” commented Yang Ding, the study’s lead author with the Carnegie-led High-Pressure Synergetic Consortium. “Early navigators used it to find the magnetic North Pole and birds use it for their navigation. And now it is used in nanotechnology. There is intense scientific interest in its properties. Understanding the behavior of magnetite is difficult because the strong interaction among its electrons complicates its electronic structure and magnetic properties.”

To study the mineral, the researchers developed and applied a novel technique, called X-ray Magnetic Circular Dichroism (XMCD) at the Advanced Photon Source, a high-energy synchrotron facility. The technique uses high-brilliance circularly polarized X-rays to probe the magnetic state of magnetite as a diamond anvil cell subjects a sample to many hundreds of thousands of atmospheres. The researchers combined their experimental results with theoretical calculations by collaborators* to pinpoint why the magnetic strength changes. The study, to be published in February in Physical Review Letters, reveals the electron-spin configuration in the iron sites of the mineral to be the origin of the phenomenon.

This discovery not only shows the profound effects of pressure on magnetism, it also discloses, for the first time, that pressure induced a spin pairing transition that results in changes in the electron mobility and structure.

“The discovery is important,” Ding said. “It advances our understanding of the correlation of magnetism, electron transport, and structural stability in materials with strong electron interactions, like magnetite.”

“It is not surprising to see that a new phenomenon has been trigged by pressure in the oldest magnet. Pressure can directly change electron-electron interactions by squeezing the spacing between them,” said Ho-kwang Mao, the director of the High-Pressure Synergetic Consortium and the High-Pressure Collaborative Access Team. “In the future, the integration of high pressure with novel synchrotron techniques will no doubt lead to more new discoveries.”

Yang Ding | EurekAlert!
Further information:
http://www.aps.anl.gov

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>