Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism loses under pressure

31.01.2008
Scientists have discovered that the magnetic strength of magnetite—the most abundant magnetic mineral on Earth—declines drastically when put under pressure.

Researchers from the Carnegie Institution’s Geophysical Laboratory, together with colleagues at the Advanced Photon Source of Argonne National Laboratory, have found that when magnetite is subjected to pressures between 120,000 and 160,000 times atmospheric pressure its magnetic strength declines by half. They discovered that the change is due to what is called electron spin pairing.

Magnetism comes from unpaired electrons in magnetic materials. The strength of a magnet is a result of the spin of unpaired electrons and how the spins of different electrons are aligned with one another. This research showed that the drop in magnetism was due to a decrease in the number of unpaired electrons.

“Magnetite is found in small quantities in certain bacteria, in brains of some birds and insects, and even in humans,” commented Yang Ding, the study’s lead author with the Carnegie-led High-Pressure Synergetic Consortium. “Early navigators used it to find the magnetic North Pole and birds use it for their navigation. And now it is used in nanotechnology. There is intense scientific interest in its properties. Understanding the behavior of magnetite is difficult because the strong interaction among its electrons complicates its electronic structure and magnetic properties.”

To study the mineral, the researchers developed and applied a novel technique, called X-ray Magnetic Circular Dichroism (XMCD) at the Advanced Photon Source, a high-energy synchrotron facility. The technique uses high-brilliance circularly polarized X-rays to probe the magnetic state of magnetite as a diamond anvil cell subjects a sample to many hundreds of thousands of atmospheres. The researchers combined their experimental results with theoretical calculations by collaborators* to pinpoint why the magnetic strength changes. The study, to be published in February in Physical Review Letters, reveals the electron-spin configuration in the iron sites of the mineral to be the origin of the phenomenon.

This discovery not only shows the profound effects of pressure on magnetism, it also discloses, for the first time, that pressure induced a spin pairing transition that results in changes in the electron mobility and structure.

“The discovery is important,” Ding said. “It advances our understanding of the correlation of magnetism, electron transport, and structural stability in materials with strong electron interactions, like magnetite.”

“It is not surprising to see that a new phenomenon has been trigged by pressure in the oldest magnet. Pressure can directly change electron-electron interactions by squeezing the spacing between them,” said Ho-kwang Mao, the director of the High-Pressure Synergetic Consortium and the High-Pressure Collaborative Access Team. “In the future, the integration of high pressure with novel synchrotron techniques will no doubt lead to more new discoveries.”

Yang Ding | EurekAlert!
Further information:
http://www.aps.anl.gov

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>