Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Videos extract mechanical properties of liquid-gel interfaces

25.01.2008
Blood coursing through vessels, lubricated cartilage sliding against joints, ink jets splashing on paper—living and nonliving things abound with fluids meeting solids.

However important these liquid/solid boundaries may be, conventional methods cannot measure basic mechanical properties of these interfaces in their natural environments. Now, researchers at the National Institute of Standards and Technology (NIST) and the University of Minnesota have demonstrated a video method that eventually may be able to make measurements on these types of biological and industrial systems.*

Optical microrheology—an emerging tool for studying flow in small samples—usually relies on heat to stir up motion. Analyzing this heat-induced movement can provide the information needed to determine important mechanical properties of fluids and the interfaces that fluids form with other materials. However, when strong flows overwhelm heat-based motion, this method isn't applicable.

Motivated by this, researchers developed a video method that can extract optically basic properties of the liquid/solid interface in strong flows. The solid material they chose was a gel, a substance that has both solid-like properties such as elasticity and liquid-like properties such as viscosity (resistance to flow).

In between a pair of centimeter-scale circular plates, the researchers deposited a gel of polydimethylsiloxane (a common material used in contact lenses and microfluidics devices). Pouring a liquid solution of polypropylene glycol on the gel, they then rotated the top plate to create forces at the liquid/gel interface. The results could be observed by tracking the motion of styrene beads in the gel.

The researchers discovered that the boundary between the liquid and gel became unstable in response to “mechanical noise” (irregularities in the motion of the plates). Such “noise” occurs in real-world physical systems. Surprisingly, a small amount of this mechanical noise produced a lot of motion at the fluid/gel interface. This motion provided so much useful information that the researchers could determine the gel’s mechanical properties—namely its “viscoelasticity”—at the liquid/gel interface.

The encouraging results from this model system show that this new approach could potentially be applied to determining properties of many useful and important liquid/solid interfaces. The NIST/Minnesota approach has possible applications in areas as diverse as speech therapy where observing the flow of air over vocal cords could enable noninvasive measures of vocal tissue elasticity and help clinicians detect problems at an early stage. Also, this research may help clarify specific plastics manufacturing problems, such as “shear banding,” in which flow can separate a uniformly blended polymer undesirably into different components.

* E.K. Hobbie, S. Lin-Gibson, and S. Kumar Non-Brownian microrheology of a fluid-gel interface, To appear in Physical Review Letters.

Ben Stein | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>