Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials' crystal properties illuminated by mathematical 'lighthouse'

21.01.2008
A deeper fundamental understanding of complex materials may now be possible, thanks to a pair of Princeton scientists who have uncovered a new insight into how crystals form.

The researchers' findings reveal a previously unknown mathematical relationship between the different arrangements that interacting particles can take while freezing. The discovery could give scientists insight into the essential behaviors of materials such as polymers, which are the basis of plastics.

Molecules in a material cooled to absolute zero can take on a multitude of different configurations. Historically, scientists' difficulty with identifying crystallized molecules' spatial arrangements from this high number of possible configurations has blocked theoretical efforts to understand these materials' qualities, but the new findings could offer the tool that science needs.

"We believe our 'duality relations' will be a useful theoretical tool to understand how individual particles come together to form a crystal," said Salvatore Torquato, a professor of chemistry who co-wrote the paper with senior chemist Frank Stillinger. "If we can tune the interactions among particles that form a crystal, we might be able to create materials that respond to light or mechanical stress in novel ways."

A material that maintains its exact size and shape through extremes in temperature, for example, might be valuable in the manufacture of orbiting space telescopes, whose mirrors need to retain their shape as they pass from sunlight into the Earth's shadow.

A crystal is the state of matter that is easiest to analyze because its frozen molecules are motionless and often regularly organized. A crystal's properties -- its ability to bend light, for example -- generally reveal valuable information about how its constituent molecules will behave at higher temperatures, such as when they become a liquid.

The challenge is that many complex materials can crystallize into a multitude of different structures. When a substance is cooled to nearly absolute zero, and it can take on an enormously large number of possible "ground states" -- the term for the molecular arrangement with the lowest possible energy. Scientists seek to determine the true ground state because it provides a fundamental understanding of matter in the solid state and its possible uses. However, determining which molecular pattern is the true ground state requires mathematical proof that is hard to come by.

"We resort to approximations," said Christos Likos, a professor of theoretical physics at the University of Dusseldorf in Germany. "They help us produce meaningful results sometimes, but we need to have a lighthouse occasionally to show us we're on the right path. Such lighthouses are rare in this business, but Sal and Frank have found one."

Torquato and Stillinger's findings explore particles' behavior as they attract and repel each other over varying distances. By analyzing this behavior, the scientists were able to conceive a precise mathematical correspondence -- called duality relations -- between possible arrangements of particles. The work will enable the researchers to draw important conclusions about how particles at very low temperatures interact over great distances, a situation that is very difficult to treat theoretically.

"Once ground states can be determined and controlled with certainty, scientists might create materials with properties virtually unknown in nature," Torquato said.

Emily Aronson | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>