Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neutron stars can be more massive, while black holes are more rare, Arecibo Observatory finds

Neutron stars and black holes aren’t all they’ve been thought to be.

In fact, neutron stars can be considerably more massive than previously believed, and it is more difficult to form black holes, according to new research developed by using the Arecibo Observatory in Arecibo, Puerto Rico. Paulo Freire, an astronomer from the observatory, will present his research at the American Astronomical Society national meeting in Austin on Jan. 11.

The Arecibo Observatory is managed by Cornell University for the National Science Foundation.

In the cosmic continuum of dead, remnant stars, the Arecibo astronomers have increased the mass limit for when neutron stars turn into black holes.

“The matter at the center of a neutron star is highly incompressible. Our new measurements of the mass of neutron stars will help nuclear physicists understand the properties of super-dense matter,” said Freire. “It also means that to form a black hole, more mass is needed than previously thought. Thus, in our universe, black holes might be more rare and neutron stars slightly more abundant.”

When the cores of massive stars run out of nuclear fuel, their enormous gravitation then causes their collapse then becomes a supernova. The core, typically with a mass 1.4 times larger than that of the sun is compressed into a neutron star. These extreme objects have a radius about 10 to 16 kilometers and a density on the order of a billion tons per cubic centimeter. Freire says that a neutron star is like one single, giant atomic nucleus with about 460,000 times the mass of the Earth.

Astronomers had thought the neutron stars needed a maximum mass between 1.6 and 2.5 suns in order to collapse and become black holes. However, this new research shows that neutron stars remain neutron stars between the mass of 1.9 and up to possibly 2.7 suns.

“The matter at the center of the neutron stars is the densest in the universe. It is one to two orders of magnitude denser than matter in the atomic nucleus. It is so dense we don’t know what it is made out of,” said Freire. “For that reason, we have at present no idea of how large or how massive neutron stars can be.”

From June 2001 to March 2007, Freire used Arecibo’s “L-wide” receiver (sensitive to radio frequencies from 1100 to 1700 MHz) and the Wide-Band Arecibo Pulsar Processors – a very fast spectrometer on the Arecibo telescope – to examine a binary pulsar called M5 B, in the globular cluster M5, which is located in the constellation Serpens. Like a lighthouse emits light, a pulsar is a strongly magnetized neutron star that emits large amounts of electromagnetic radiation, usually from its magnetic pole. As in the case of a lighthouse, distant observers perceive a sequence of pulsations, which are caused by the rotation of the pulsar. In the case of M5 B, these radio pulsations arrive at the Earth every 7.95 milliseconds.

These radio pulsations were scanned by the wide-band spectrometers once every 64 microseconds for 256 spectral channels, and then recorded to a computer disk, with accurate timing information. The precise arrival time of the pulses were then used by the astronomers to accurately measure the orbital motion of M5 B about its companion. This allowed the astronomers to estimate the mass (1.9 solar masses) of the pulsar.

Blaine Friedlander | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>