Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 unusual older stars giving birth to second wave of planets

11.01.2008
Hundreds of millions — or even billions — of years after planets would have initially formed around two unusual stars, a second wave of planetesimal and planet formation appears to be taking place, UCLA astronomers and colleagues believe.

"This is a new class of stars, ones that display conditions now ripe for formation of a second generation of planets, long, long after the stars themselves formed," said UCLA astronomy graduate student Carl Melis, who reported the findings today at the American Astronomical Society meeting in Austin, Texas.

"If we took a rocket to one of these stars and discovered there were two totally distinct ages for their planets and more minor bodies like asteroids, that would blow scientists' minds away," said Benjamin Zuckerman, UCLA professor of physics and astronomy and co-author of the research, which has not yet been published. "We're seeing stars with characteristics that have never been seen before."

The stars, which Melis says possess "amazing" properties for their age, are known as BP Piscium, in the constellation Pisces, and TYCHO 4144 329 2, in the constellation Ursa Major.

These two stars have many characteristics of very young stars, Melis said, including rapid accretion of gas, extended orbiting disks of dust and gas, a large infrared excess emission and, in the case of BP Piscium, jets of gas that are being shot into space. Planetesimals, like comets and asteroids, along with planets, form from the gas and dust particles that orbit young stars; planetesimals are small masses of rock or ice that merge to form larger bodies.

"With all these characteristics that match so closely with young stars, we would expect that our two stars would also be young," Melis said. "As we gathered more data, however, things just did not add up." For example, because stars burn lithium as they get older, young stars should have large quantities of lithium. The astronomers found, however, that the spectroscopic signature of lithium in BP Piscium is seven times weaker than expected for a young star of its mass.

"There is no known way to account for this small amount of lithium if BP Piscium is a young star," Melis said. "Rather, lithium has been heavily processed, as appropriate for old stars. Other spectral measurements also indicate it is a much older star."

As seen from Earth, some 75 percent of BP Piscium's radiant energy is being converted by the dust particles into infrared light, and about 12 percent of TYCHO 4144 329 2's. These are unusually high amounts, which Melis described as "spectacular" in comparison to other stars that are known to be not-young.

TYCHO 4144 329 2 orbits a companion star that has a mass similar to that of our sun; a second generation of planets is not forming around this companion, which appears to be an ordinary old star in all respects. By studying this companion star, the astronomers have deduced that TYCHO 4144 329 2 is just 200 light-years from Earth — very close by astronomical standards. They do not know precise age of TYCHO 4144 329 2, or BP Piscium's age or distance from Earth.

The astronomers are continuing to study these stars with a variety of ground-based telescopes and with space-based observatories, including NASA's Hubble Space Telescope and Chandra X-ray Observatory, and they are searching for additional similar stars.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>