Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 unusual older stars giving birth to second wave of planets

11.01.2008
Hundreds of millions — or even billions — of years after planets would have initially formed around two unusual stars, a second wave of planetesimal and planet formation appears to be taking place, UCLA astronomers and colleagues believe.

"This is a new class of stars, ones that display conditions now ripe for formation of a second generation of planets, long, long after the stars themselves formed," said UCLA astronomy graduate student Carl Melis, who reported the findings today at the American Astronomical Society meeting in Austin, Texas.

"If we took a rocket to one of these stars and discovered there were two totally distinct ages for their planets and more minor bodies like asteroids, that would blow scientists' minds away," said Benjamin Zuckerman, UCLA professor of physics and astronomy and co-author of the research, which has not yet been published. "We're seeing stars with characteristics that have never been seen before."

The stars, which Melis says possess "amazing" properties for their age, are known as BP Piscium, in the constellation Pisces, and TYCHO 4144 329 2, in the constellation Ursa Major.

These two stars have many characteristics of very young stars, Melis said, including rapid accretion of gas, extended orbiting disks of dust and gas, a large infrared excess emission and, in the case of BP Piscium, jets of gas that are being shot into space. Planetesimals, like comets and asteroids, along with planets, form from the gas and dust particles that orbit young stars; planetesimals are small masses of rock or ice that merge to form larger bodies.

"With all these characteristics that match so closely with young stars, we would expect that our two stars would also be young," Melis said. "As we gathered more data, however, things just did not add up." For example, because stars burn lithium as they get older, young stars should have large quantities of lithium. The astronomers found, however, that the spectroscopic signature of lithium in BP Piscium is seven times weaker than expected for a young star of its mass.

"There is no known way to account for this small amount of lithium if BP Piscium is a young star," Melis said. "Rather, lithium has been heavily processed, as appropriate for old stars. Other spectral measurements also indicate it is a much older star."

As seen from Earth, some 75 percent of BP Piscium's radiant energy is being converted by the dust particles into infrared light, and about 12 percent of TYCHO 4144 329 2's. These are unusually high amounts, which Melis described as "spectacular" in comparison to other stars that are known to be not-young.

TYCHO 4144 329 2 orbits a companion star that has a mass similar to that of our sun; a second generation of planets is not forming around this companion, which appears to be an ordinary old star in all respects. By studying this companion star, the astronomers have deduced that TYCHO 4144 329 2 is just 200 light-years from Earth — very close by astronomical standards. They do not know precise age of TYCHO 4144 329 2, or BP Piscium's age or distance from Earth.

The astronomers are continuing to study these stars with a variety of ground-based telescopes and with space-based observatories, including NASA's Hubble Space Telescope and Chandra X-ray Observatory, and they are searching for additional similar stars.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>