Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New X-ray source in nearby galaxy spawns mystery

11.01.2008
Astronomers studying a nearby galaxy have spied a rare type of star system -- one that contains a black hole that suddenly began glowing brightly with X-rays.

Though this type of star system is supposed to be rare, it's the second such system discovered in that galaxy, called Centaurus A.

The discovery suggests that astronomers have more to learn about the lives and deaths of massive stars in galaxies such as our own.

Normally when astronomers study Centaurus A, it's the giant X-ray jets emanating from the heart of the galaxy that steal the show, explained Gregory Sivakoff, a postdoctoral researcher in astronomy at Ohio State University. The jets extend from the galaxy for 13,000 light years in different directions.

But when his team studied Centaurus A with NASA's Chandra X-ray Observatory starting in March 2007, they saw a new X-ray source -- much smaller than the X-ray jets, but still glowing brightly. The source wasn't there during the last survey of the galaxy in 2003, but it shined throughout the time of the new observations, from March to May of 2007.

Because it hadn't been seen before, the astronomers classified the object as a “transient” X-ray source, meaning that the object had been there before 2007, but had only recently brightened enough to stand out.

Sivakoff discussed the results in a press briefing Wednesday, January 9, 2008 at the American Astronomical Society meeting in Austin, Texas.

The newly bright object, dubbed CXOU J132518.2-430304, is most likely a binary star system, the researchers concluded. The two stars likely formed at the same time, with one much more massive than the other. The more massive star evolved more quickly, and collapsed to form a black hole. It is now slowly devouring its companion. Such binary systems are thought to be extremely rare.

But this is the second bright, transient X-ray binary system discovered in Centaurus A -- and that's the problem, Sivakoff said.

“When we look at other galaxies like Centaurus A, we don't see these bright, transient X-ray binaries,” he said. “But now we've found two such objects in Centaurus A, and the implication is that we may not understand these objects as well as we thought we did.”

“So right now, our discovery is actually pointing to a puzzle rather than a solution.”

Because Centaurus A is near to our galaxy, astronomers have long hoped to use it as a Rosetta stone for studying other galaxies with black holes.

As astronomers piece together an explanation for the existence of the newly-discovered binary system, they may gain a better understanding of how black holes form from massive stars and how binary systems evolve.

“These binary systems are signposts of the massive stars that once existed in galaxies like Centaurus A. To understand the massive stars, we must first know how to read the signs,” he said.

Sivakoff and Ralph Kraft of the Harvard-Smithsonian Center for Astrophysics led the study; their collaborators were from NASA Goddard Space Flight Center, Oak Ridge Associated Universities, University of Hertfordshire, University of Virginia, University of Bristol, McMaster University, and the University of Birmingham.

This research was sponsored by NASA.

Gregory Sivakoff | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>