Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New X-ray source in nearby galaxy spawns mystery

11.01.2008
Astronomers studying a nearby galaxy have spied a rare type of star system -- one that contains a black hole that suddenly began glowing brightly with X-rays.

Though this type of star system is supposed to be rare, it's the second such system discovered in that galaxy, called Centaurus A.

The discovery suggests that astronomers have more to learn about the lives and deaths of massive stars in galaxies such as our own.

Normally when astronomers study Centaurus A, it's the giant X-ray jets emanating from the heart of the galaxy that steal the show, explained Gregory Sivakoff, a postdoctoral researcher in astronomy at Ohio State University. The jets extend from the galaxy for 13,000 light years in different directions.

But when his team studied Centaurus A with NASA's Chandra X-ray Observatory starting in March 2007, they saw a new X-ray source -- much smaller than the X-ray jets, but still glowing brightly. The source wasn't there during the last survey of the galaxy in 2003, but it shined throughout the time of the new observations, from March to May of 2007.

Because it hadn't been seen before, the astronomers classified the object as a “transient” X-ray source, meaning that the object had been there before 2007, but had only recently brightened enough to stand out.

Sivakoff discussed the results in a press briefing Wednesday, January 9, 2008 at the American Astronomical Society meeting in Austin, Texas.

The newly bright object, dubbed CXOU J132518.2-430304, is most likely a binary star system, the researchers concluded. The two stars likely formed at the same time, with one much more massive than the other. The more massive star evolved more quickly, and collapsed to form a black hole. It is now slowly devouring its companion. Such binary systems are thought to be extremely rare.

But this is the second bright, transient X-ray binary system discovered in Centaurus A -- and that's the problem, Sivakoff said.

“When we look at other galaxies like Centaurus A, we don't see these bright, transient X-ray binaries,” he said. “But now we've found two such objects in Centaurus A, and the implication is that we may not understand these objects as well as we thought we did.”

“So right now, our discovery is actually pointing to a puzzle rather than a solution.”

Because Centaurus A is near to our galaxy, astronomers have long hoped to use it as a Rosetta stone for studying other galaxies with black holes.

As astronomers piece together an explanation for the existence of the newly-discovered binary system, they may gain a better understanding of how black holes form from massive stars and how binary systems evolve.

“These binary systems are signposts of the massive stars that once existed in galaxies like Centaurus A. To understand the massive stars, we must first know how to read the signs,” he said.

Sivakoff and Ralph Kraft of the Harvard-Smithsonian Center for Astrophysics led the study; their collaborators were from NASA Goddard Space Flight Center, Oak Ridge Associated Universities, University of Hertfordshire, University of Virginia, University of Bristol, McMaster University, and the University of Birmingham.

This research was sponsored by NASA.

Gregory Sivakoff | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>