Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Supercomputer could throw light on dark energy

Cosmologists at Durham University’s world-leading Institute for Computational Cosmology (ICC) have run a series of huge computer simulations of the Universe that could help solve one of astronomy’s greatest mysteries. The results tell researchers how to measure dark energy – a force that counteracts gravity and could decide the ultimate fate of the cosmos.

The findings, to be published on Friday, 11 January in the Monthly Notices of the Royal Astronomical Society, will also provide vital input into the design of a proposed satellite mission called SPACE – the SPectroscopic All-sky Cosmic Explorer - that could unveil the nature of dark energy.

The discovery of dark energy in 1998 was completely unexpected and understanding its nature is one of the biggest problems in physics. Scientists believe that dark energy, which makes up 70 per cent of the Universe, is driving its accelerating expansion. If this expansion continues to accelerate experts say it could eventually lead to a Big Freeze as the Universe is pulled apart and becomes a vast cold expanse of dying stars and black holes.

The simulations, which took 11 days to run on Durham’s unique Cosmology Machine (COSMA) computer, looked at tiny ripples in the distribution of matter in the Universe made by sound waves a few hundred thousand years after the Big Bang. The ripples are delicate and some have been destroyed over the subsequent 13 billion years of the Universe, but the simulations showed they survived in certain conditions.

By changing the nature of dark energy in the simulations, the researchers discovered that the ripples appeared to change in length and could act as a “standard ruler” in the measurement of dark energy.

ICC Director Professor Carlos Frenk said: “The ripples are a ‘gold standard’. By comparing the size of the measured ripples to the gold standard we can work out how the Universe has expanded and from this figure out the properties of the dark energy.

“Astronomers are stuck with the one universe we live in. However, the simulations allow us to experiment with what might have happened if there had been more or less dark energy in the universe.”

In the next five to 10 years a number of experiments are planned to explore dark energy. The Durham simulation has demonstrated the feasibility of the SPACE satellite mission proposed to the European Space Agency’s (ESA) Cosmic Vision programme.

The project has been put forward by an international consortium of researchers including the Durham team.

SPACE, which is led by Bologna University, in Italy, is through to the next round of assessment by the ESA and if successful is planned to launch in 2017.

Co-principal investigator Professor Andrea Cimatti, of Bologna University, said: “Thanks to the ICC simulations it is possible to predict what SPACE would observe and to plan how to develop the mission parameters in order to obtain a three-dimensional map of the Universe and to compare it with the predictions of the simulations.

“Thanks to this comparison it will be possible to unveil the nature of dark energy and to understand how the structures in the Universe built up and evolved with cosmic time.”

The Durham research was funded by the Science and Technology Facilities Council (STFC) and the European Commission.

Robert Massey | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>