Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer could throw light on dark energy

11.01.2008
Cosmologists at Durham University’s world-leading Institute for Computational Cosmology (ICC) have run a series of huge computer simulations of the Universe that could help solve one of astronomy’s greatest mysteries. The results tell researchers how to measure dark energy – a force that counteracts gravity and could decide the ultimate fate of the cosmos.

The findings, to be published on Friday, 11 January in the Monthly Notices of the Royal Astronomical Society, will also provide vital input into the design of a proposed satellite mission called SPACE – the SPectroscopic All-sky Cosmic Explorer - that could unveil the nature of dark energy.

The discovery of dark energy in 1998 was completely unexpected and understanding its nature is one of the biggest problems in physics. Scientists believe that dark energy, which makes up 70 per cent of the Universe, is driving its accelerating expansion. If this expansion continues to accelerate experts say it could eventually lead to a Big Freeze as the Universe is pulled apart and becomes a vast cold expanse of dying stars and black holes.

The simulations, which took 11 days to run on Durham’s unique Cosmology Machine (COSMA) computer, looked at tiny ripples in the distribution of matter in the Universe made by sound waves a few hundred thousand years after the Big Bang. The ripples are delicate and some have been destroyed over the subsequent 13 billion years of the Universe, but the simulations showed they survived in certain conditions.

By changing the nature of dark energy in the simulations, the researchers discovered that the ripples appeared to change in length and could act as a “standard ruler” in the measurement of dark energy.

ICC Director Professor Carlos Frenk said: “The ripples are a ‘gold standard’. By comparing the size of the measured ripples to the gold standard we can work out how the Universe has expanded and from this figure out the properties of the dark energy.

“Astronomers are stuck with the one universe we live in. However, the simulations allow us to experiment with what might have happened if there had been more or less dark energy in the universe.”

In the next five to 10 years a number of experiments are planned to explore dark energy. The Durham simulation has demonstrated the feasibility of the SPACE satellite mission proposed to the European Space Agency’s (ESA) Cosmic Vision programme.

The project has been put forward by an international consortium of researchers including the Durham team.

SPACE, which is led by Bologna University, in Italy, is through to the next round of assessment by the ESA and if successful is planned to launch in 2017.

Co-principal investigator Professor Andrea Cimatti, of Bologna University, said: “Thanks to the ICC simulations it is possible to predict what SPACE would observe and to plan how to develop the mission parameters in order to obtain a three-dimensional map of the Universe and to compare it with the predictions of the simulations.

“Thanks to this comparison it will be possible to unveil the nature of dark energy and to understand how the structures in the Universe built up and evolved with cosmic time.”

The Durham research was funded by the Science and Technology Facilities Council (STFC) and the European Commission.

Robert Massey | alfa
Further information:
http://www.icc.dur.ac.uk/

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>