Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark Energy, The Milky Way galaxy, and Giant Planets

11.01.2008
The Sloan Digital Sky Survey Continues

Building on eight years of extraordinary discoveries by the Sloan Digital Sky Survey (SDSS and SDSS-II), a new program of four coordinated surveys will revolutionize the study of the distant universe, the Milky Way galaxy, and giant planets orbiting other stars. The largest of these surveys will use a novel and powerful technique to study dark energy, one of the biggest mysteries in contemporary science.

The new programme was announced today at the American Astronomical Society meeting in Austin, Texas.

"The cosmological measurements in SDSS-III could rewrite fundamental physics, either pinning down the properties of an exotic form of energy that fills the universe or showing that Einstein's theory of gravity fails at cosmological distances," explains Daniel Eisenstein of the University of Arizona and director of the newly formed collaboration.

The largest of the four surveys, the Baryon Oscillation Spectroscopic Survey (BOSS), will measure the expansion of the universe with unprecedented precision.

"BOSS will measure the distance across the local universe to an accuracy of better than one centrimeter for every meter measured: it’s the ultimate cosmic tape measure!” says Bob Nichol of the University of Portsmouth’s Institute of Cosmology and Gravitation.

"Once we have done BOSS, there may not be much more of the local Universe we need to study.”

The University of Portsmouth was the first British university to become a member of the Sloan Digital Sky Survey, the most ambitious survey of the sky ever undertaken, involving over 300 astronomers and engineers at 25 institutions around the world.

A decade ago, Daniel Eisenstein explains, astronomers made the startling discovery that the expansion of the universe is speeding up. "It's like tossing a ball in the air, waiting for it to fall, and instead seeing it accelerate upwards and disappear from sight."

Cosmologists attribute this acceleration to so-called "dark energy," which pervades otherwise empty space and exerts repulsive gravitational force. Dark energy could be the cosmological constant proposed by Albert Einstein in 1917, or it could be a new form of energy whose properties evolve with time. Distinguishing these possibilities, or determining whether the theory of gravity itself is at fault, requires measuring the history of cosmic expansion with very high precision, explains David Schlegel of Lawrence Berkeley National Laboratory, principal investigator of BOSS.

In 2005, the SDSS achieved one of the first clear detections of "baryon acoustic oscillations," a feature imprinted on the clustering of galaxies by sound waves that traveled in the early universe. BOSS will use this feature as a "yardstick in the sky" to measure cosmic distances, says Schlegel. "Our measurements should reach one-percent accuracy and extend to distances of ten billion light years, giving us strong tests of dark energy theories."

While new, more sensitive instruments are being constructed for BOSS, SDSS-III will carry out a one-year extension of SEGUE, an SDSS-II survey mapping the outer Milky Way. "The Galaxy's stellar halo is much more complex than anyone realized a decade ago, and we want to understand what that is telling us about the formation of the Milky Way," explains Constance Rockosi of the University of California at Santa Cruz, the principal investigator of SEGUE-2.

Interstellar dust blocks visible light coming from stars in the inner Milky Way. Infrared light penetrates this dust, revealing stars even from heavily obscured regions near the Galactic centre. The new APOGEE survey will employ a unique new instrument that observes infrared light from 300 stars simultaneously, enabling a survey of 100,000 stars across the entire Galaxy. "When stars die, the chemical elements forged by nuclear reactions in their cores are released into space," explains Steven Majewski of the University of Virginia, principal investigator of APOGEE.

"The APOGEE measurements will provide detailed chemical 'fingerprints' for each target star, which in turn reveal the properties of the stars that preceded them. It's the ultimate exercise in forensic archeology."

And what about planets orbiting those stars? Of the 200 or so planetary systems currently known, most are very different from our own solar system, notes Jian Ge of the University of Florida. The majority of known planets are gaseous giants, like Jupiter, but they follow elongated (instead of circular) trajectories and orbit much closer to their parent stars. Ge is the principal investigator of MARVELS, which will search more than 10,000 stars for orbiting giant planets, a three-fold increase on the number searched by all other telescopes to date.

"By systematically monitoring such a large number of stars," says Ge, "MARVELS will address two of the biggest questions in planetary science: how do giant planets form, and why are so many in such unusual orbits?"

Jim Gunn of Princeton University, who has led nearly two decades of construction and operation of the Sloan Digital Sky Survey, is excited about its new ventures. "It's amazing to see that the SDSS can transform scientific fields we hadn't even conceived of 20 years ago."

The Alfred P. Sloan Foundation of New York has approved a $7 million grant in support of SDSSIII, conditional on raising the additional funds from collaboration members and federal agencies needed to complete the project.

SDSS-III is due to run from mid-2008 to mid-2014. Its four component surveys will all operate from the 2.5-meter telescope at Apache Point Observatory in New Mexico, using optical fibres to capture the light of hundreds of objects simultaneously. This technique allowed the SDSS and SDSS-II to create the largest three-dimensional map of the present-day universe.

Lisa Egan | alfa
Further information:
http://www.port.ac.uk
http://www.astronomy.ohiostate.edu/~dhw/SDSS3/sdss3pr.html

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>