Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark Energy, The Milky Way galaxy, and Giant Planets

11.01.2008
The Sloan Digital Sky Survey Continues

Building on eight years of extraordinary discoveries by the Sloan Digital Sky Survey (SDSS and SDSS-II), a new program of four coordinated surveys will revolutionize the study of the distant universe, the Milky Way galaxy, and giant planets orbiting other stars. The largest of these surveys will use a novel and powerful technique to study dark energy, one of the biggest mysteries in contemporary science.

The new programme was announced today at the American Astronomical Society meeting in Austin, Texas.

"The cosmological measurements in SDSS-III could rewrite fundamental physics, either pinning down the properties of an exotic form of energy that fills the universe or showing that Einstein's theory of gravity fails at cosmological distances," explains Daniel Eisenstein of the University of Arizona and director of the newly formed collaboration.

The largest of the four surveys, the Baryon Oscillation Spectroscopic Survey (BOSS), will measure the expansion of the universe with unprecedented precision.

"BOSS will measure the distance across the local universe to an accuracy of better than one centrimeter for every meter measured: it’s the ultimate cosmic tape measure!” says Bob Nichol of the University of Portsmouth’s Institute of Cosmology and Gravitation.

"Once we have done BOSS, there may not be much more of the local Universe we need to study.”

The University of Portsmouth was the first British university to become a member of the Sloan Digital Sky Survey, the most ambitious survey of the sky ever undertaken, involving over 300 astronomers and engineers at 25 institutions around the world.

A decade ago, Daniel Eisenstein explains, astronomers made the startling discovery that the expansion of the universe is speeding up. "It's like tossing a ball in the air, waiting for it to fall, and instead seeing it accelerate upwards and disappear from sight."

Cosmologists attribute this acceleration to so-called "dark energy," which pervades otherwise empty space and exerts repulsive gravitational force. Dark energy could be the cosmological constant proposed by Albert Einstein in 1917, or it could be a new form of energy whose properties evolve with time. Distinguishing these possibilities, or determining whether the theory of gravity itself is at fault, requires measuring the history of cosmic expansion with very high precision, explains David Schlegel of Lawrence Berkeley National Laboratory, principal investigator of BOSS.

In 2005, the SDSS achieved one of the first clear detections of "baryon acoustic oscillations," a feature imprinted on the clustering of galaxies by sound waves that traveled in the early universe. BOSS will use this feature as a "yardstick in the sky" to measure cosmic distances, says Schlegel. "Our measurements should reach one-percent accuracy and extend to distances of ten billion light years, giving us strong tests of dark energy theories."

While new, more sensitive instruments are being constructed for BOSS, SDSS-III will carry out a one-year extension of SEGUE, an SDSS-II survey mapping the outer Milky Way. "The Galaxy's stellar halo is much more complex than anyone realized a decade ago, and we want to understand what that is telling us about the formation of the Milky Way," explains Constance Rockosi of the University of California at Santa Cruz, the principal investigator of SEGUE-2.

Interstellar dust blocks visible light coming from stars in the inner Milky Way. Infrared light penetrates this dust, revealing stars even from heavily obscured regions near the Galactic centre. The new APOGEE survey will employ a unique new instrument that observes infrared light from 300 stars simultaneously, enabling a survey of 100,000 stars across the entire Galaxy. "When stars die, the chemical elements forged by nuclear reactions in their cores are released into space," explains Steven Majewski of the University of Virginia, principal investigator of APOGEE.

"The APOGEE measurements will provide detailed chemical 'fingerprints' for each target star, which in turn reveal the properties of the stars that preceded them. It's the ultimate exercise in forensic archeology."

And what about planets orbiting those stars? Of the 200 or so planetary systems currently known, most are very different from our own solar system, notes Jian Ge of the University of Florida. The majority of known planets are gaseous giants, like Jupiter, but they follow elongated (instead of circular) trajectories and orbit much closer to their parent stars. Ge is the principal investigator of MARVELS, which will search more than 10,000 stars for orbiting giant planets, a three-fold increase on the number searched by all other telescopes to date.

"By systematically monitoring such a large number of stars," says Ge, "MARVELS will address two of the biggest questions in planetary science: how do giant planets form, and why are so many in such unusual orbits?"

Jim Gunn of Princeton University, who has led nearly two decades of construction and operation of the Sloan Digital Sky Survey, is excited about its new ventures. "It's amazing to see that the SDSS can transform scientific fields we hadn't even conceived of 20 years ago."

The Alfred P. Sloan Foundation of New York has approved a $7 million grant in support of SDSSIII, conditional on raising the additional funds from collaboration members and federal agencies needed to complete the project.

SDSS-III is due to run from mid-2008 to mid-2014. Its four component surveys will all operate from the 2.5-meter telescope at Apache Point Observatory in New Mexico, using optical fibres to capture the light of hundreds of objects simultaneously. This technique allowed the SDSS and SDSS-II to create the largest three-dimensional map of the present-day universe.

Lisa Egan | alfa
Further information:
http://www.port.ac.uk
http://www.astronomy.ohiostate.edu/~dhw/SDSS3/sdss3pr.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>