Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heat from the Heavens - Opening up the Infrared Sky

The infrared sky is expanding significantly for the world astronomical community with the first world release of data (DR1) from the UKIRT Infrared Deep Sky Survey (UKIDSS).

UKIDSS DR1 has mapped a larger volume of the sky than any previous infrared survey. As the UKIDSS project progresses, it will gradually become the dominant source of information about the infrared sky, expanding its volume by a factor of 15 beyond DR1.

For the past two years, the United Kingdom Infrared Telescope (UKIRT) in
Hawaii has been systematically scanning the heavens for five different "colours" of faint infrared light. This allows astronomers to penetrate dark clouds where stars are currently forming, and to locate stars much less massive and much cooler than the Sun. Furthermore, our own Galaxy (the Milky Way) is transparent to the infrared, making it possible to see all the way to its centre and beyond. And finally, the expansion of the Universe stretches visible light from the most distant (and youngest) galaxies and quasars into the infrared part of the spectrum, and by observing this infrared light we can trace the evolution of galaxies from their youngest members. The first world release of these data makes all this information available to researchers everywhere.

Andy Lawrence from the University of Edinburgh, the UKIDSS Principal Investigator, said "We are moving into new territory. This survey probes huge volumes of space, so that we can locate rare but important objects like the very coolest and least luminous stars and the most distant galaxies. Astronomers in Europe have started getting the science out, but this world release should really unleash the scientific potential of the dataset."

The present release, large though it is, however, is just the beginning.

Andy Adamson, Associate Director of UKIRT, says "WFCAM has recently taken its one millionth observation, and the UKIDSS survey is progressing strongly. UKIDSS will have surveyed a volume 15 times larger than the current release, DR1, by the time it is completed in 2012."

Results from this world-leading effort are released in two stages - first to the member nations of the European Southern Observatory (ESO), and 18 months later to the world astronomical community. The data now being released worldwide were obtained in the first, intensive and exciting, WFCAM observing periods on the UKIRT telescope, up to January 2006. There will be new data releases approximately every six months over the coming five years.

Astronomers from the ESO nations have been busily following up on the early UKIDSS data for the past year. The survey has proved itself a rich source of exotic objects, exactly as expected. Steve Warren, the UKIDSS Survey Scientist, highlights the discovery of the coolest known brown dwarf in the Galaxy - ULAS J0034 for short - which, at an absolute temperature only just over twice that of the Earth, is fully 100 degrees cooler than any other known brown dwarf. This is likely one of the closest astronomical objects outside the Solar System, and was discovered in the shallow UKIDSS Large Area Survey (LAS). UKIDSS is also expected to discover some of the most distant objects known, and it appears to be well on the way to this goal. DR1 includes early data from the Ultra-Deep Survey (UDS), which aims to study the evolution of galaxies when the Universe was a fraction of its current age. This project is extraordinarily ambitious, requiring the telescope to revisit the same square-degree area of sky on hundreds of nights. "A hundred thousand very distant galaxies are detected even in the earliest UDS data, and there is also a 'needle in a haystack' object - a quasar at a redshift just in excess of 6, meaning 12.7 billion light years from Earth," says co-discoverer Ross McLure. "The light we now see from this object is very, very old, having set off on its journey to the telescope only a billion years after the big bang."

The first world release also contains large amounts of data on the Milky Way, with millions of stars, young stars and other objects seen clearly through the thick veils of dust which block the Milky Way to visible light, as illustrated in the accompanying images. Phil Lucas, head of the Galactic Plane Survey (GPS), notes that "in terms of detected objects, the GPS dominates UKIDSS, with hundreds of millions of infrared stars in DR1 and many times that still to come. And with the science archive now hosting a large-scale image of the GPS so far, we're able to visualize the infrared Milky Way better than ever before."

These results are among the motivations for carrying out surveys of the infrared sky. Comprising five separate surveys, some of which are highlighted here, UKIDSS has now scoured a larger volume of the Universe than any previous sky survey, and only slightly less than the largest visible light surveys. When the observations are completed in 2012, UKIDSS will have probed some 70 times deeper on average than the previous largest survey.

"The UKIDSS survey programme was expressly designed to capitalise on the unique technical capabilities of the UKIRT Wide-Field Camera" said Gary Davis, Director of the Joint Astronomy Centre in Hawaii, which operates the UKIRT. WFCAM was developed at the UK Astronomy Technology Centre in Edinburgh at a cost of £5M, and it is now the world's leading infrared panoramic camera. "It is rewarding to see the effort and dedication of a large team of scientists and engineers over many years coming to fruition. The release of DR1 presages the huge impact that UKIRT will make on world astronomy over the next several years by probing deeper into the infrared universe than ever before."

Images from the Wide Field Camera undergo processing at the Cambridge Astronomical Survey Unit (CASU), Cambridge, UK, and the science products are transferred to the WFCAM Science Archive operated by the Wide Field Astronomy Unit in the Institute for Astronomy at the University of Edinburgh. Astronomers from around the world will access the UKIDSS data from the Science Archive, which is bracing for the influx of new users.

A small preliminary release, of about 1/4 the size of DR1, has been scrutinized from all over the world since it was opened up in August 2007. Nigel Hambly, the scientist responsible for operation of the Science Archive, says that interest is likely to be intense. "Followup of objects discovered in this data release within the ESO nations has already revealed the power of the UKIDSS survey to turn up unique objects and we expect the world community will want to quickly make the most of the data now becoming available".

Background Information:

Light Year
One light year is about 10 million million kilometres or 6 million million miles.
Infrared Light
Infrared wavelengths are longer wavelengths than light waves. They are typically measured in microns, also called micrometres. One micron is one millionth of a metre, one 10000th of a centimetre, or one 25000th of an inch.
Brown Dwarf
A brown dwarf is a small, faint, cool object (often called "failed" star) that, unlike the Sun and other stars, does not have sufficient mass to achieve hydrogen fusion in its core. Brown dwarfs exist in the mass range between about ten times that of Jupiter and one-twelfth the Sun's mass. Most of their radiation is in the infrared, and therefore is not detectable to either the human eye or conventional optical detectors. Detectors sensitive to longer infrared wavelengths, such as those used at UKIRT, are capable of observing these objects in unique ways.
The word "quasar" comes originally from "quasi-stellar radio source," describing objects as bright as stars but at extragalactic distances. Today we understand that quasars are the ultraluminous centers of distant galaxies likely powered by supermassive black holes.
The Wide-Field Camera (WFCAM) was delivered to UKIRT in late 2004 and has been in active operation since Spring 2005. In two years of operation - sharing the telescope about equally with other observing modes - WFCAM has taken 30 times the amount of data taken in the entire 25-year history of the telescope before its arrival.
The world's largest telescope dedicated solely to infrared astronomy, the 3.8-metre (12.5-foot) UK Infrared Telescope (UKIRT) is sited near the summit of Mauna Kea, Hawaii, at an altitude of 4194 metres (13760 feet) above sea level. It is operated by the Joint Astronomy Centre in Hilo, Hawaii, on behalf of the UK Science and Technology Facilities Council. More about the UK Infrared Telescope:

The UK Astronomy Technology Centre is located at the Royal Observatory,
Edinburgh (ROE). It is a scientific site belonging to the Science and Technology Facilities Council. The mission of the UK ATC is to support the mission and strategic aims of the Science and Technology Facilities Council and to help keep the UK at the forefront of world astronomy by providing a UK focus for the design, production and promotion of state of the art astronomical technology.
Science and Technology Facilities Council
The Science and Technology Facilities Council ensures the UK retains its leading place on the world stage by delivering world-class science; accessing and hosting international facilities; developing innovative technologies; and increasing the socio-economic impact of its research through effective knowledge exchange partnerships.
The Council has a broad science portfolio including Astronomy, Particle Physics, Particle Astrophysics, Nuclear Physics, Space Science, Synchrotron Radiation, Neutron Sources and High Power Lasers. In addition the Council manages and operates three internationally renowned laboratories:
•The Rutherford Appleton Laboratory, Oxfordshire
•The Daresbury Laboratory, Cheshire
•The UK Astronomy Technology Centre, Edinburgh
The Council gives researchers access to world-class facilities and funds the UK membership of international bodies such as the European Laboratory for Particle Physics (CERN), the Institute Laue Langevin (ILL), European Synchrotron Radiation Facility (ESRF), the European organisation for Astronomical Research in the Southern Hemisphere (ESO) and the European Space Agency (ESA). It also contributes money for the UK telescopes overseas on La Palma, Hawaii, Australia and in Chile, and the MERLIN/VLBI National Facility, which includes the Lovell Telescope at Jodrell Bank Observatory.

The Council distributes public money from the Government to support scientific research. Between 2007 and 2008 we will invest approximately £678 million.

1a. A globular cluster observed as part of the UKIDSS DR1 release.The image shows a globular cluster in the constellation of Aquila, about 9,000 light years from Earth.

1b. The image on the left shows a globular cluster about 9,000 light years from Earth in the constellation of Aquila. This image in the visual wavelengths was taken by the Palomar Sky Survey in the 1950s. In comparison, the image on the right shows the same area in the infrared, taken as part of the UKIDSS DR1 release. The infrared image reveals the presence and the structure of a globular cluster of stars, first seen by the Spitzer Space Telescope, which is about 6 light years across with a mass of 300,000 suns. The brightness of the stars varies dramatically between the visible and infrared wavelengths due to interstellar extinction.

2a. Field IRAS 20376 observed as part of a future UKIDSS public release.The image shows the structure of an HII region in the constellation of Cygnus, about 5,500 light years from Earth.

2b. The image on the left shows a region called IRAS 20376 about 5,500 light years from Earth in the constellation of Cygnus. This image in the visual wavelengths was taken by the Second Digital Sky Survey in the 1980s. In comparison, the image on the right shows the same area in the infrared, taken as part of a future UKIDSS public release. The infrared image reveals the presence and the structure of an HII starforming region.

3. The United Kingdom Infrared Telescope on Mauna Kea, Hawaii.

4. The Wide Field Camera (long black tube) on the United Kingdom.
Infrared Telescope on Mauna Kea, Hawaii.
These images are available at
GPS Mosaic:
United Kingdom Astronomy Technology Centre:
Science and Technology Facilities Council:

Julia Maddock | alfa
Further information:

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>



Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

More VideoLinks >>>