Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers are First to Successfully Predict Extra-Solar Planet

10.01.2008
Astronomers, including one at The University of Arizona, have successfully predicted the existence of an unknown planet, the first since Neptune was predicted in the 1840s. This planet, however, is outside our own solar system, circling a star a little more than 200 light years from Earth.
The UA's Rory Barnes and his associates predicted the unknown planet from their theoretical study of the orbits of two planets known to orbit star HD 74156. Barnes announced the discovery today at the American Astronomical Society meeting in Austin, Texas.

Barnes, who was an astronomy and physics undergraduate at UA, is now a post-doctoral associate at the UA's Lunar and Planetary Laboratory. He and his colleagues studied the orbits of several planetary systems and found that planets¹ orbits tend to be packed as closely together as possible without gravity destabilizing their orbits. They reasoned that this tight packing resulted from universal processes of planetary formation.

But the two planets, named ³B² and ³C², orbiting the star HD 74156 had a big gap between them. They concluded that if their ³Packed Planetary Systems² hypothesis was correct, then there must be another planet between planets B and C, and it must be in a particular orbit.

³When I realized that six out of seven multiplanet systems appeared Œpacked,¹² Barnes said, ³I naturally expected there must be another planet in the HD 74156 system so that it, too, would be packed.²

Jacob Bean and his colleagues from the University of Texas observed the planetary system carefully and confirmed that a new planet was located where Barnes had predicted. The new planet is named, by convention, HD 74156 D.

Those who collaborated with Barnes in making the successful prediction are Sean Raymond, now a post-doctoral associate at the University of Colorado, and professor Thomas Quinn of the University of Washington. The discovery team, from the University of Texas at Austin, includes Jacob Bean¹s adviser, professor Barbara McArthur, and professor Fritz Benedict.

Steven Soter, astronomer with the American Museum of Natural History in New York, has been following the discoveries of "extra-solar" planets, or planets orbiting other stars beyond our solar system. Soter noted that Barnes, Raymond and Quinn are the first to successfully predict the existence of an unknown planet since Neptune was predicted more than 160 years ago. Mid-19th century astronomers John Couch Adams in England and Urbain-Jean-Joseph Le Verrier in France independently calculated the position of Neptune based on irregularities in the motion of Uranus.

"As well as providing a way to predict planet discoveries, the Packed Planetary Systems hypothesis reveals something fundamental about the formation of planets," Barnes said. "The process by which planets grow from the clouds of dust and gas around young stars must be very efficient.
Wherever there is room for a planet to form, it does."

The Packed Planetary Systems hypothesis also predicts that gaps between known planets in other systems are probably occupied by other, still undiscovered planets. Barnes noted that shortly after the discovery of HD
74156 d, a different team of astronomers found a planet orbiting the star 55 Cancri, again in an orbit that Barnes and Raymond predicted.

Barnes and colleagues also have predicted a specific planet orbiting a third system, HD 38529. So far, no planet has been discovered there. However, the scientists say they expect future observations may confirm another successful prediction by the Packed Planetary Systems hypothesis.

CONTACT: Rory Barnes (520-626-3154; rory@lpl.arizona.edu)

Lori Stiles | UA Science news
Further information:
http://www.lpl.arizona.edu/~rory/prediction/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>