Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers are First to Successfully Predict Extra-Solar Planet

10.01.2008
Astronomers, including one at The University of Arizona, have successfully predicted the existence of an unknown planet, the first since Neptune was predicted in the 1840s. This planet, however, is outside our own solar system, circling a star a little more than 200 light years from Earth.
The UA's Rory Barnes and his associates predicted the unknown planet from their theoretical study of the orbits of two planets known to orbit star HD 74156. Barnes announced the discovery today at the American Astronomical Society meeting in Austin, Texas.

Barnes, who was an astronomy and physics undergraduate at UA, is now a post-doctoral associate at the UA's Lunar and Planetary Laboratory. He and his colleagues studied the orbits of several planetary systems and found that planets¹ orbits tend to be packed as closely together as possible without gravity destabilizing their orbits. They reasoned that this tight packing resulted from universal processes of planetary formation.

But the two planets, named ³B² and ³C², orbiting the star HD 74156 had a big gap between them. They concluded that if their ³Packed Planetary Systems² hypothesis was correct, then there must be another planet between planets B and C, and it must be in a particular orbit.

³When I realized that six out of seven multiplanet systems appeared Œpacked,¹² Barnes said, ³I naturally expected there must be another planet in the HD 74156 system so that it, too, would be packed.²

Jacob Bean and his colleagues from the University of Texas observed the planetary system carefully and confirmed that a new planet was located where Barnes had predicted. The new planet is named, by convention, HD 74156 D.

Those who collaborated with Barnes in making the successful prediction are Sean Raymond, now a post-doctoral associate at the University of Colorado, and professor Thomas Quinn of the University of Washington. The discovery team, from the University of Texas at Austin, includes Jacob Bean¹s adviser, professor Barbara McArthur, and professor Fritz Benedict.

Steven Soter, astronomer with the American Museum of Natural History in New York, has been following the discoveries of "extra-solar" planets, or planets orbiting other stars beyond our solar system. Soter noted that Barnes, Raymond and Quinn are the first to successfully predict the existence of an unknown planet since Neptune was predicted more than 160 years ago. Mid-19th century astronomers John Couch Adams in England and Urbain-Jean-Joseph Le Verrier in France independently calculated the position of Neptune based on irregularities in the motion of Uranus.

"As well as providing a way to predict planet discoveries, the Packed Planetary Systems hypothesis reveals something fundamental about the formation of planets," Barnes said. "The process by which planets grow from the clouds of dust and gas around young stars must be very efficient.
Wherever there is room for a planet to form, it does."

The Packed Planetary Systems hypothesis also predicts that gaps between known planets in other systems are probably occupied by other, still undiscovered planets. Barnes noted that shortly after the discovery of HD
74156 d, a different team of astronomers found a planet orbiting the star 55 Cancri, again in an orbit that Barnes and Raymond predicted.

Barnes and colleagues also have predicted a specific planet orbiting a third system, HD 38529. So far, no planet has been discovered there. However, the scientists say they expect future observations may confirm another successful prediction by the Packed Planetary Systems hypothesis.

CONTACT: Rory Barnes (520-626-3154; rory@lpl.arizona.edu)

Lori Stiles | UA Science news
Further information:
http://www.lpl.arizona.edu/~rory/prediction/

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>