Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snakes Hear in Stereo

10.01.2008
Paul Friedel, Bruce A. Young, and J. Leo van Hemmen Physical Review Letters (forthcoming)

Physicists from the University Munich in Germany and the University of Topeka, Kansas have strong new evidence that snakes can hear through their jaws. Snakes don't have outer ears, leading to the myth that they can't hear at all.

But they do have complete inner ear systems, including functional cochlea, which are carefully connected to and stimulated by their lower jaw. Resting on the ground, a snake's jaw can detect vibrations as small as an angstrom in amplitude (a motion roughly as large the diameter of a single atom), which act like sound waves to the inner ear.

The physicists performed a geometric study of the anatomy of horned desert vipers as well as the ground waves created by the footfalls of their prey. They showed mathematically that the jaw-to-cochlea system is sensitive to the frequencies of the prey's ground vibrations.

From their analysis, the physicists also found that the snake's notorious ability to unhinge their jaws and swallow their prey whole means that the right and left side of their jaws can receive vibrations independently, and the snakes hear in stereo.

The paper provides data supporting the theory that as the cochlea is stimulated, the snake’s auditory neurons create a topological map of its environment. Thus, as experiments have shown, some snakes can catch their prey using only vibration cues.

The physicists believe their study shows that ground vibrations to the lower jaw should be regarded as a significant source of sensory input for the snakes, and that this finding strongly supports the idea of the auditory stimulation creating a neural map. - CC

James Riordon | American Physical Society
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

nachricht PPPL physicist uncovers clues to mechanism behind magnetic reconnection
24.01.2017 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>