Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble finds that “blue blobs” in space are orphaned clusters of stars

09.01.2008
Hubble has revealed that mysterious "blue blobs" in a structure called Arp’s Loop between M81 and M82 are blue clusters of stars less than 200 million years old with many stars as young as, and even younger than, 10 million years.

Finding blue blobs in space sounds like an encounter with an alien out of a science fiction movie. But the powerful NASA/ESA Hubble Space Telescope has resolved strange objects nicknamed "blobs" and found them to be brilliant blue clusters of stars born in the swirls and eddies of a galactic pile-up 200 million years ago.

The findings are reported by Duilia de Mello of the Catholic University of America, Washington, D.C. and NASA’s Goddard Space Flight Center, Greenbelt, Md. and her colleagues at the 211th meeting of the American Astronomical Society in Austin, Texas, USA.

Such “blue blobs”- each weighing tens of thousands of solar masses -have never been seen in detail before in such sparse locations, say researchers. They are more massive than most open clusters found inside galaxies, but a fraction of the mass of globular star clusters that orbit a galaxy.

Because the orphan stars don’t belong to any particular galaxy, the heavier elements produced in their fusion furnaces may easily be expelled back into intergalactic space. This may offer clues as to how the early universe was “polluted” with heavier elements early in its history, say researchers.

The mystery is that the “blue blobs” are found along a wispy bridge of gas strung among three colliding galaxies, M81, M82, and NGC 3077, residing approximately 12 million light-years from Earth. This is not the place astronomers expect to find star clusters: in the "abyssal plain" of intergalactic space. “We could not believe it, the stars were in the middle of nowhere”, says de Mello.

The “blue blobs” are clumped together in a structure called Arp’s Loop, along the tenuous gas bridge. The gas filaments were considered too thin to accumulate enough material to actually build this many stars, says de Mello. But Hubble reveals the “blue blobs” contain the equivalent of five Orion Nebulae.

After finding that these “blobs” resolved into stars, the team used the Hubble image to measure an age for the clusters of less than 200 million years old with many stars as young as, and even younger than, 10 million years. Not coincidentally, 200 million years is the estimated age of the galactic collision that created the tidal gas streamers, pulled between the galaxies like candy floss.

De Mello and her team propose that the star clusters in this diffuse structure might have formed from gas collisions and the subsequent turbulence, which enhanced the density of the gas streams locally. Galaxy collisions were much more frequent in the early Universe, so “blue blobs” should have been common. After the stars burned out or exploded, the heavier elements forged in their nuclear furnaces would have been ejected to enrich intergalactic space.

Radio observations with the Very Large Array of radio telescopes in Socorro, New Mexico, USA, gave a detailed map of the intergalactic bridge that revealed knots of denser gas. Studies with the 3.5m WIYN telescope on Kitt Peak in Arizona, USA, mapped the optical light glow of hydrogen along the bridge. Observations with NASA's Galaxy Evolution Explorer (GALEX) ultraviolet space telescope revealed an ultraviolet glow at the knots, and that earned them the nickname “blue blobs”. But GALEX did not have the resolution to see individual stars or clusters. Only Hubble’s Advanced Camera for Surveys at last revealed the point sources of the ultraviolet radiation.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0801.html

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>