Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M physicist reads the history of the solar system in grains of comet dust

08.01.2008
Four years ago, NASA's Stardust spacecraft chased down a comet and collected grains of dust blowing off its nucleus.

When the spacecraft Comet Wild-2 returned, comet dust was shipped to scientists all over the world, including University of Minnesota physics professor Bob Pepin. After testing helium and neon trapped in the dust specks, Pepin and his colleagues report that while the comet formed in the icy fringes of the solar system, the dust appears to have been born close to the infant sun and bombarded by intense radiation from these and other gases before being flung out beyond Neptune and trapped in the comet. The research appears in the Jan. 4 issue of the journal Science.

The finding opens the question of what was going on in the early life of the solar system to subject the dust to such intense radiation and hurl them hundreds of millions of miles from their birthplace.

The studies of cometary dust are part of a larger effort to trace the history of our celestial neighborhood.

"We want to establish what the solar system looked like in the very early stages," said Pepin. "If we establish the starting conditions, we can tell what happened in between then and now." One early event was the birth of Earth's moon, about 50 million years after the solar system formed.

Also, the gases he studies have relevance even closer to home. "Because some scientists have proposed that comets have contributed these gases to the atmospheres of Earth, Venus and Mars, learning about them in comets would be fascinating," he said.

Comet Wild-2 (pronounced Vilt-two) is thought to have originated in the Kuiper Belt, a comet-rich region stretching from just inside the orbit of Neptune to well beyond Pluto. As it grew in this roughly -360 F region, it incorporated grains of dust and ambient gas.

The comet received a visit from the Stardust spacecraft in early January 2004, two years after its launch. Veering as close as 149 miles to the comet nucleus, Stardust used a spongy, ultralight glass-fiber material called aerogel to trap the dust. At the moment of encounter, the spacecraft exposed a sheet of aerogel -- supported by a framework -- to the stream of particles blowing off the nucleus.

"It looked like a tennis racket," said Pepin. "It was exposed for approximately 20 minutes."

The aerogel trapped aggregates of fine particles that hit at 13,000 miles per hour and split on impact. The collisions left drumstick-shaped trails pointing inward from the surface of the aerogel.

After the collection, the spacecraft headed home and parachuted its payload safely back to Earth in January 2006. A few months later, Pepin received three sub-samples of particles and colleagues at Nancy University, France, received two others, all from the same particle "hit."

Their task was to analyze gases locked in tiny dust grains about a quarter of a billionth of a gram in weight. As a first step, the researchers heated the grains to about 1,400 degrees C., liberating gases imprisoned for eons.

"The particles probably came from the first million years or even less, of the solar system's existence," Pepin said. That would be close to 4.6 billion years ago. If our middle-aged sun were 50 years old, then the particles were born in the first four days of its life.

Patty Mattern | EurekAlert!
Further information:
http://www.umn.edu

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>