Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematicians Find Way To Improve Medical Scans

08.01.2008
Mathematicians at the University of Liverpool have found that it is possible to gain full control of sound waves which could lead to improved medical scans, for technology such as ultra sound machines.

Working in partnership with the Indian Institute of Technology in Kanpur, they tested the numerical properties of a flat lens made out of ‘meta-material’ - a material that gains its properties from its structure rather than its composition. This material is thought to defy the laws of physics, allowing objects to appear exactly as they are rather than upside down as seen in a normal convex or concave lens.

Dr Sebastien Guenneau, from Liverpool’s Department of Mathematical Sciences, explains: “We know that light can be controlled using ‘meta-material’ which can bend electromagnetic radiation around an area of space, making any object within it appear invisible. Now we have produced a mathematical model that proves this theory also works for sound.

“This theory becomes particularly interesting when considering ultrasound, which is a sound pressure used to penetrate an object to help produce an image of what the object looks like inside. This is most commonly used in pregnancy scans to produce an image of a foetus. We found that at a particular wave frequency the meta-material has a negative refraction effect, which means that the image produced in the flat lens appears at a high resolution in exactly the same way it appears in reality.

“What surprised us most of all, however, was at the point where negative refraction occurs the meta-material becomes invisible, suggesting that if we were to use this in sonogram technology, it could be possible to make the image appear in mid-air like a hologram rather than on a computer screen. We also found that if we arranged the meta-material in a checkerboard fashion, sound became trapped, making noisy machines, for example, quieter.”

The scientists predict that the technology could be adapted for tests at higher sound frequencies such as when drilling for oil, where a more accurate image of the earth could be made in order to pin point where drilling should take place.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk

More articles from Physics and Astronomy:

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

nachricht Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>