Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark Matter Dwarf Galaxies May Girdle the Milky Way

22.05.2002


New evidence suggests that hundreds of unseen dwarf galaxies made of dark matter encircle our Milky Way and other large, visible galaxies. Scientists believe that 80 to 90 percent of the universe must be made of this as-yet-undetected matter to account for the observed structure of the universe. According to Einstein, such large concentrations of matter should warp the surrounding space and bend light in much the same way that glass lenses do. With that in mind, astrophysicists at the University of California at San Diego and the Harvard-Smithsonian Center for Astrophysics in Cambridge analyzed how light from distant galaxies was warped by intervening, lensing galaxies in order to indirectly search for dark matter galaxies.


Image: EMILIO FALCO ET AL. Harvard-Smithsonian Center for Astrophysics



This so-called gravitational lensing can split an image of a single galaxy into two or more images. Imagine a rock that partly dams a stream so that water runs around it in two rivulets--a galaxy that lies between a distant light source and Earth can deflect light beams emitted toward our planet into multiple streams in a similar way, yielding numerous images. (For example, the image above depicts the quasar MG 0414+534 showing multiple images due to gravitational lensing by an intervening galaxy.) The number and appearance of these multiple images depends on the distribution of mass inside the intervening galaxies. If the lensing galaxies are surrounded by many smaller galaxies, the brightness of one of these lensed images could be significantly enhanced if it lined up with a dark matter galaxy.

Researchers Neal Dalal and Christopher Kochanek looked at seven different lensing galaxies that each divided the light of a distant galaxy into four images of varying brightness. They determined that about 2 percent of the lensing galaxies’ masses must be in the form of a halo of invisible, dark matter dwarf galaxies to explain the brightness variations detected among the multiple images of the background galaxies. The scientists remain puzzled as to why these dark matter galaxies contain few or no stars, however, since 10 to 20 percent of their mass should exist as normal matter. "It’s difficult to hide that much material," Dalal observes. The findings will appear in the June 10 issue of the Astrophysical Journal.

Charles Choi | Scientific American

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>