Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark Matter Dwarf Galaxies May Girdle the Milky Way

22.05.2002


New evidence suggests that hundreds of unseen dwarf galaxies made of dark matter encircle our Milky Way and other large, visible galaxies. Scientists believe that 80 to 90 percent of the universe must be made of this as-yet-undetected matter to account for the observed structure of the universe. According to Einstein, such large concentrations of matter should warp the surrounding space and bend light in much the same way that glass lenses do. With that in mind, astrophysicists at the University of California at San Diego and the Harvard-Smithsonian Center for Astrophysics in Cambridge analyzed how light from distant galaxies was warped by intervening, lensing galaxies in order to indirectly search for dark matter galaxies.


Image: EMILIO FALCO ET AL. Harvard-Smithsonian Center for Astrophysics



This so-called gravitational lensing can split an image of a single galaxy into two or more images. Imagine a rock that partly dams a stream so that water runs around it in two rivulets--a galaxy that lies between a distant light source and Earth can deflect light beams emitted toward our planet into multiple streams in a similar way, yielding numerous images. (For example, the image above depicts the quasar MG 0414+534 showing multiple images due to gravitational lensing by an intervening galaxy.) The number and appearance of these multiple images depends on the distribution of mass inside the intervening galaxies. If the lensing galaxies are surrounded by many smaller galaxies, the brightness of one of these lensed images could be significantly enhanced if it lined up with a dark matter galaxy.

Researchers Neal Dalal and Christopher Kochanek looked at seven different lensing galaxies that each divided the light of a distant galaxy into four images of varying brightness. They determined that about 2 percent of the lensing galaxies’ masses must be in the form of a halo of invisible, dark matter dwarf galaxies to explain the brightness variations detected among the multiple images of the background galaxies. The scientists remain puzzled as to why these dark matter galaxies contain few or no stars, however, since 10 to 20 percent of their mass should exist as normal matter. "It’s difficult to hide that much material," Dalal observes. The findings will appear in the June 10 issue of the Astrophysical Journal.

Charles Choi | Scientific American

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>