Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coming up in January’s Physics World . . .

04.01.2008
The magnificent but mysterious snowflake. The beautiful snowflake is much more than an attractive seasonal occurrence. In fact, understanding how a snowflake grows is a complex problem of molecular dynamics, writes Kenneth Libbrecht, Professor of Physics at the California Institute of Technology, in January’s Physics World.

Everyone knows that no two snowflakes are identical to one another. That's because they all start out as a simple hexagonal prism - the most basic form of snow crystal - but then encounter a range of atmospheric conditions as they journey down to Earth.

It was two Japanese physicists who made early strides in our understanding of snowflake formation. Ukichiro Nakaya at the University of Hokkaido in the 1930s and Takehiko Gonda in the 1970s at the Science University of Tokyo found that humidity, temperature, air pressure and other conditions are the variables that determine the shape of a snowflake.

Kenneth Libbrecht writes, “Although no two crystals end up exactly alike, the six arms of a single crystal all travel together, so they all grow in synchrony, giving each falling crystal a unique and intricate structure with a recognisable symmetry.”

The conditions in the atmosphere dictate how water molecules are transported to the crystal but, because of the infinitesimal range of conditions, that makes it hard to simulate snowflake growth and explain how particular structures are formed.

Numerical modelling is now being used to reproduce the complex structures. The work is of particular interest to metallurgists as a better understanding of snowflake structures could profoundly affect the strength and ductility of their own final materials on a micro- or even nano-scale.

Libbrecht continues, “Beyond the intrinsic scientific questions, beyond the practical applications of crystal growth, and beyond the meteorological significance of atmospheric ice, we who ponder snowflakes are motivated by a simple and essential desire to comprehend the natural world around us.”

Also in this issue:

•Funding bombshell hits UK physics
•The physics of dance

Dianne Stilwell | alfa
Further information:
http://www.physicsworld.com/

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>