Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coming up in January’s Physics World . . .

04.01.2008
The magnificent but mysterious snowflake. The beautiful snowflake is much more than an attractive seasonal occurrence. In fact, understanding how a snowflake grows is a complex problem of molecular dynamics, writes Kenneth Libbrecht, Professor of Physics at the California Institute of Technology, in January’s Physics World.

Everyone knows that no two snowflakes are identical to one another. That's because they all start out as a simple hexagonal prism - the most basic form of snow crystal - but then encounter a range of atmospheric conditions as they journey down to Earth.

It was two Japanese physicists who made early strides in our understanding of snowflake formation. Ukichiro Nakaya at the University of Hokkaido in the 1930s and Takehiko Gonda in the 1970s at the Science University of Tokyo found that humidity, temperature, air pressure and other conditions are the variables that determine the shape of a snowflake.

Kenneth Libbrecht writes, “Although no two crystals end up exactly alike, the six arms of a single crystal all travel together, so they all grow in synchrony, giving each falling crystal a unique and intricate structure with a recognisable symmetry.”

The conditions in the atmosphere dictate how water molecules are transported to the crystal but, because of the infinitesimal range of conditions, that makes it hard to simulate snowflake growth and explain how particular structures are formed.

Numerical modelling is now being used to reproduce the complex structures. The work is of particular interest to metallurgists as a better understanding of snowflake structures could profoundly affect the strength and ductility of their own final materials on a micro- or even nano-scale.

Libbrecht continues, “Beyond the intrinsic scientific questions, beyond the practical applications of crystal growth, and beyond the meteorological significance of atmospheric ice, we who ponder snowflakes are motivated by a simple and essential desire to comprehend the natural world around us.”

Also in this issue:

•Funding bombshell hits UK physics
•The physics of dance

Dianne Stilwell | alfa
Further information:
http://www.physicsworld.com/

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>