Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Impact 'celebrates' New Year's Eve with Earth flyby

31.12.2007
Earth Flyby and Moon Pics Mark Start of Journey to Hartely 2

This New Year's Eve the University of Maryland-led Deep Impact team will again celebrate a holiday in a way that few can match, when their Deep Impact spacecraft "buzzes" the Earth on a flyby that marks the beginning of a more than two-and-a-half-year journey to comet Hartley 2.

In 2005, the Deep Impact team, led by University of Maryland astronomer Michael A'Hearn, celebrated July 4th by smashing a probe into comet Tempel 1 to give the world its first look inside a comet.

The trip to Hartley 2 is one part of a new two-part mission for the team and its Deep Impact spacecraft. During the first six months of the journey, the Extrasolar Planet Observations and Characterization (EPOCh) mission team will use the larger of the two telescopes on the Deep Impact spacecraft to search for Earth-sized planets around five stars selected as likely candidates for such planets. Upon arriving at the comet the Deep Impact eXtended Investigation (DIXI) will conduct an extended flyby of Hartley 2 using all three of the spacecraft's instruments (two telescopes with digital color cameras and an infrared spectrometer. The name for the new combined mission, EPOXI, is a combination of the names of its component missions (EPOCh + DIXI = EPOXI).

The team is using the flyby of Earth to calibrate the spacecrafts instruments for the new mission and to help slingshot it on the way toward Hartley 2. Although the spacecraft will come closest to the Earth on New Year's Eve, the Maryland-led team has already begun its calibration work.

"On Saturday, 29 December, two days before its close flyby of Earth, the Deep Impact flyby spacecraft made observations of the moon to calibrate its instruments for its new mission, EPOXI," said A'Hearn. "Some calibrations are obtainable only on a bright, large source, like the moon when reasonably close to it. It looks as though everything operated just as the science team asked it to operate and you can't ask for anything better than that,” he said. "

'This Earth gravity assist provided a unique opportunity for us to calibrate our instruments using the Moon," said Jessica Sunshine, a senior research scientist at the University of Maryland. "In particular, the Moon is very useful because it fills the entire field of view of the infrared spectrometer. The results show that our spacecraft pointing and commanding was spot on. We also made measurements which will allow us to cross-calibrate our instruments with telescopic data and, in the very near future, with a wealth of lunar measurements from new orbiting spacecraft. These data will significantly improve the science from EPOCh observations of Earth and the DIXI flyby of comet Hartley 2, as well as from Deep Impact's prime mission to comet Tempel 1," said Sunshine who is deputy principal investigator on DIXI.

Lee Tune | EurekAlert!
Further information:
http://www.umd.edu
http://www.newsdesk.umd.edu/scitech/release.cfm?ArticleID=1564
http://deepimpact.umd.edu/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>