Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deep Impact 'celebrates' New Year's Eve with Earth flyby

Earth Flyby and Moon Pics Mark Start of Journey to Hartely 2

This New Year's Eve the University of Maryland-led Deep Impact team will again celebrate a holiday in a way that few can match, when their Deep Impact spacecraft "buzzes" the Earth on a flyby that marks the beginning of a more than two-and-a-half-year journey to comet Hartley 2.

In 2005, the Deep Impact team, led by University of Maryland astronomer Michael A'Hearn, celebrated July 4th by smashing a probe into comet Tempel 1 to give the world its first look inside a comet.

The trip to Hartley 2 is one part of a new two-part mission for the team and its Deep Impact spacecraft. During the first six months of the journey, the Extrasolar Planet Observations and Characterization (EPOCh) mission team will use the larger of the two telescopes on the Deep Impact spacecraft to search for Earth-sized planets around five stars selected as likely candidates for such planets. Upon arriving at the comet the Deep Impact eXtended Investigation (DIXI) will conduct an extended flyby of Hartley 2 using all three of the spacecraft's instruments (two telescopes with digital color cameras and an infrared spectrometer. The name for the new combined mission, EPOXI, is a combination of the names of its component missions (EPOCh + DIXI = EPOXI).

The team is using the flyby of Earth to calibrate the spacecrafts instruments for the new mission and to help slingshot it on the way toward Hartley 2. Although the spacecraft will come closest to the Earth on New Year's Eve, the Maryland-led team has already begun its calibration work.

"On Saturday, 29 December, two days before its close flyby of Earth, the Deep Impact flyby spacecraft made observations of the moon to calibrate its instruments for its new mission, EPOXI," said A'Hearn. "Some calibrations are obtainable only on a bright, large source, like the moon when reasonably close to it. It looks as though everything operated just as the science team asked it to operate and you can't ask for anything better than that,” he said. "

'This Earth gravity assist provided a unique opportunity for us to calibrate our instruments using the Moon," said Jessica Sunshine, a senior research scientist at the University of Maryland. "In particular, the Moon is very useful because it fills the entire field of view of the infrared spectrometer. The results show that our spacecraft pointing and commanding was spot on. We also made measurements which will allow us to cross-calibrate our instruments with telescopic data and, in the very near future, with a wealth of lunar measurements from new orbiting spacecraft. These data will significantly improve the science from EPOCh observations of Earth and the DIXI flyby of comet Hartley 2, as well as from Deep Impact's prime mission to comet Tempel 1," said Sunshine who is deputy principal investigator on DIXI.

Lee Tune | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>