Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COROT surprises a year after launch

21.12.2007
The space-borne telescope, COROT (Convection, Rotation and planetary Transits), has just completed its first year in orbit. The observatory has brought in surprises after over 300 days of scientific observations.

Pioneering precision measurement over long periods of time COROT is observing a large number of stars, up to 12 000, simultaneously, at a very high precision - unprecedented in ground-based astronomy. The key to the high-precision is that the observations can be carried out over very long periods of time – up to 150 days. This is being done for the first time ever.

The satellite measures variations in the light output of these stars down to one part in a million. This level of precision allows scientists to study the many ways in which stars vary. The pulsations are caused either due to unknown physical processes in the stellar interior, or by objects such as planets passing in front of the stellar surface.

A treasure trove of information for stellar seismology

To date, 30 stars have been observed as part of the study of stellar seismology, the study of the miniscule changes in light output from a star caused by acoustic waves travelling through the star. The pattern of the changes tells us a lot about what is happening deep inside the star. The stars observed by COROT range from objects similar to our own Sun to older or more massive stars. The observation period varies between 20 and 150 days of essentially uninterrupted study.

After a preliminary analysis, the measurements have revealed very exciting results

Research into solar-type oscillations is one of the mission’s key objectives. Such oscillations have already been found in two stars that are very similar to our sun - first in HD49933 and then in HD181420. The variations are very weak in amplitude and given their short coherence time (the duration for which a particular wave persists on the stellar surface), they are very hard to detect and measure.

COROT’s discovers its second exoplanet

As a planet passes in front of a star, there is a dip in the light output from the star, which is detected by COROT. Since many other processes can mimic the signature observed, to confirm the presence of a planet, a large confirmation programme with supplementary ground-based observations is necessary to prove the existence of a planet.

Although COROT observes thousands of light curves, the pace of discovery is governed by ground-based observations.

In the third sequence of COROT observations, a likely time for the transit of COROT-exo-2b in front of its star was worked out and an analysis of the light curve was carried out in real-time to confirm the find. Observations were carried out simultaneously at the observatory of Haute Provence in France, and at the European Southern Observatory in Chile, confirming the existence of the planet and its mass was measured.

COROT-exo-2b orbits a star similar to our Sun, somewhat more massive and cooler, but more active. It is located about 800 light-years from Earth in the direction of the constellation Serpens. COROT-exo-2b is a giant planet, 1.4 times larger and 3.5 times more massive than Jupiter. Its average density of 1.5 grams per cubic centimetre is also somewhat higher than Jupiter’s. This massive planet orbits its star in a little less than two days from a distance of about six times the stellar radius.

"Christmas is early this year,” for ESA's COROT Project Scientist, Malcolm Fridlund. “The release of the first data set has already had the science team working hard. The quality of the data is fantastic and the results will change both, how we see exoplanets and how we understand stars."

Malcolm Fridlund | alfa
Further information:
http://www.esa.int/SPECIALS/COROT/SEMF0C2MDAF_0.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>