Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT, others ask 'What would E.T. see?'

21.12.2007
Team analyzes how alien astronomers would study Earth

As astronomers become more adept at searching for, and finding, planets orbiting other stars, it's natural to wonder if anybody is looking back. Now, a team of astronomers that includes a professor from MIT has figured out just what those alien eyes might see using technologies being developed by Earth's astronomers.

According to their analysis, among other things E.T. could probably tell that our planet's surface is divided between oceans and continents, and learn a little bit about the dynamics of our weather systems.

"Maybe somebody's looking at us right now, finding out what our rotation rate is - that is, the length of our day," says Sara Seager, associate professor of physics and the Ellen Swallow Richards Associate Professor of Planetary Sciences at MIT.

Seager, along with Enric Palle and colleagues at the Instituto Astrofisica del Canarias, in Spain, and Eric Ford (MIT class of 1999) of the University of Florida, have done a detailed analysis of what astronomers here and on other worlds could learn about a planet from very distant observations, using telescopes much more powerful than those currently available to Earth's astronomers. Their study, which has just been published online in the Astrophysical Journal, will appear in the journal's print edition in April.

Most of the planets astronomers have discovered beyond the Solar System have not actually been seen; rather, they have been indirectly observed by looking at the influence they exert on stars they orbit. But even with the most advanced telescopes planned by Earth's astronomers for use over the next several years, a planet orbiting another star would only appear as a single pixel-that is, a single point of light, with no detail except its brightness and color. By comparison, a simple cellphone camera typically takes pictures with about a million pixels, or one megapixel.

"The goal of [our] project was to see how much information you can extract" from very limited data, Seager says. The team's conclusion: a great deal of information about a planet can be gleaned from that single pixel and the way it changes over time.

The way of analyzing the data that Seager and her co-authors studied would work for any world that has continents and bodies of liquid on its surface plus clouds in its atmosphere, even if those were made of very different materials on an alien world. For example, icy worlds with seas of liquid methane, like Saturn's moon Titan, or very hot worlds with oceans of molten silicate (which is solid rock on Earth), would show up similarly across the vastness of space.

However, the method depends on clouds covering only part of a planet's surface, regardless of what each world is made of. So Titan, covered by perpetual global smog, would not give up the mysteries of its weather or rotation, nor would the hellishly hot Venus, with its complete shroud of clouds.

The key, the astronomers learned after sudying data from Earth's weather satellites, is that while clouds vary from day to day, there are overall patterns that stay relatively constant, associated with where arid or rainy landmasses are. Detecting those repeating patterns would allow distant astronomers to figure out the planet's rotation period because a brightening associated with clouds above a particular continent would show up regularly once each "day," whatever the length of that day might be. Once the day's length is determined, then any variations in that period would reveal the changing weather-that is, clouds in a different place than the average.

No telescope now in operation is capable of making the measurements that Seager and her team analyzed. But planned telescopes such as NASA's Kepler, set for launch in 2009, would be able to discover dozens or hundreds of Earth-like worlds. Then even more advanced space observatories being considered, such as NASA's Terrestrial Planet Finder, would allow the followup studies to learn about these planets' rotation and weather, and the composition of their atmospheres, Seager says.

The research was funded in part by a Ramon y Cajal fellowship for Palle, and a Hubble Fellowship grant for Ford and by NASA.

Patti Richards | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>