Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT, others ask 'What would E.T. see?'

21.12.2007
Team analyzes how alien astronomers would study Earth

As astronomers become more adept at searching for, and finding, planets orbiting other stars, it's natural to wonder if anybody is looking back. Now, a team of astronomers that includes a professor from MIT has figured out just what those alien eyes might see using technologies being developed by Earth's astronomers.

According to their analysis, among other things E.T. could probably tell that our planet's surface is divided between oceans and continents, and learn a little bit about the dynamics of our weather systems.

"Maybe somebody's looking at us right now, finding out what our rotation rate is - that is, the length of our day," says Sara Seager, associate professor of physics and the Ellen Swallow Richards Associate Professor of Planetary Sciences at MIT.

Seager, along with Enric Palle and colleagues at the Instituto Astrofisica del Canarias, in Spain, and Eric Ford (MIT class of 1999) of the University of Florida, have done a detailed analysis of what astronomers here and on other worlds could learn about a planet from very distant observations, using telescopes much more powerful than those currently available to Earth's astronomers. Their study, which has just been published online in the Astrophysical Journal, will appear in the journal's print edition in April.

Most of the planets astronomers have discovered beyond the Solar System have not actually been seen; rather, they have been indirectly observed by looking at the influence they exert on stars they orbit. But even with the most advanced telescopes planned by Earth's astronomers for use over the next several years, a planet orbiting another star would only appear as a single pixel-that is, a single point of light, with no detail except its brightness and color. By comparison, a simple cellphone camera typically takes pictures with about a million pixels, or one megapixel.

"The goal of [our] project was to see how much information you can extract" from very limited data, Seager says. The team's conclusion: a great deal of information about a planet can be gleaned from that single pixel and the way it changes over time.

The way of analyzing the data that Seager and her co-authors studied would work for any world that has continents and bodies of liquid on its surface plus clouds in its atmosphere, even if those were made of very different materials on an alien world. For example, icy worlds with seas of liquid methane, like Saturn's moon Titan, or very hot worlds with oceans of molten silicate (which is solid rock on Earth), would show up similarly across the vastness of space.

However, the method depends on clouds covering only part of a planet's surface, regardless of what each world is made of. So Titan, covered by perpetual global smog, would not give up the mysteries of its weather or rotation, nor would the hellishly hot Venus, with its complete shroud of clouds.

The key, the astronomers learned after sudying data from Earth's weather satellites, is that while clouds vary from day to day, there are overall patterns that stay relatively constant, associated with where arid or rainy landmasses are. Detecting those repeating patterns would allow distant astronomers to figure out the planet's rotation period because a brightening associated with clouds above a particular continent would show up regularly once each "day," whatever the length of that day might be. Once the day's length is determined, then any variations in that period would reveal the changing weather-that is, clouds in a different place than the average.

No telescope now in operation is capable of making the measurements that Seager and her team analyzed. But planned telescopes such as NASA's Kepler, set for launch in 2009, would be able to discover dozens or hundreds of Earth-like worlds. Then even more advanced space observatories being considered, such as NASA's Terrestrial Planet Finder, would allow the followup studies to learn about these planets' rotation and weather, and the composition of their atmospheres, Seager says.

The research was funded in part by a Ramon y Cajal fellowship for Palle, and a Hubble Fellowship grant for Ford and by NASA.

Patti Richards | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>