Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop 2-D invisibility cloak

20.12.2007
Harry Potter may not have talked much about plasmonics in J. K. Rowling's fantasy series, but University of Maryland researchers are using this emerging technology to develop an invisibility cloak that exists beyond the world of bespectacled teenage wizards.

A research team at Maryland's A. James Clark School of Engineering comprised of Professor Christopher Davis, Research Scientist Igor Smolyaninov, and graduate student Yu-Ju Hung, has used plasmon technology to create the world's first invisibility cloak for visible light. The engineers have applied the same technology to build a revolutionary superlens microscope that allows scientists to see details of previously undetectable nanoscale objects.

Generally speaking, when we see an object, we see the visible light that strikes the object and is reflected. The Clark School team's invisibility cloak refracts (or bends) the light that strikes it, so that the light moves around and past the cloak, reflecting nothing, leaving the cloak and its contents "invisible."

The invisibility cloak device is a two-dimensional pattern of concentric rings created in a thin, transparent acrylic plastic layer on a gold film. The plastic and gold each have different refractive properties. The structured plastic on gold in different areas of the cloak creates "negative refraction" effects, which bend plasmons—electron waves generated when light strikes a metallic surface under precise circumstances—around the cloaked region.

This manipulation causes the plasmon waves to appear to have moved in a straight line. In reality they have been guided around the cloak much as water in a stream flows around a rock, and released on the other side, concealing the cloak and the object inside from visible light. The invisibility that this phenomenon creates is not absolutely perfect because of energy loss in the gold film.

The team achieved this invisibility under very specialized conditions. The researchers' cloak is just 10 micrometers in diameter; by comparison, a human hair is between 50 to 100 micrometers wide. Also, the cloak uses a limited range of the visible spectrum, in two dimensions. It would be a significant challenge to extend the cloak to three dimensions because researchers would need to control light waves both magnetically and electronically to steer them around the hidden object. The technology initially may work only for small objects of specific controlled shape.

The team also has used plasmonics to develop superlens microscopy technology, which can be integrated into a conventional optical microscope to view nanoscale details of objects that were previously undetectable.

The superlens microscope could one day image living cells, viruses, proteins, DNA molecules, and other samples, operating much like a point-and-shoot camera. This new technology could revolutionize the capability to view nanoscale objects at a crucial stage of their development. The team believes they can improve the resolution of their microscope images down to about 10 nanometers—one ten thousandth of the width of a human hair.

A large reason for the success of the group's innovations in both invisibility and microscopy is that surface plasmons have very short wave lengths, and can therefore move data around using much smaller-scale guiding structures than in existing devices. These small, rapid waves are generated at optical frequencies, and can transport large amounts of data. The group also has made use of the unique properties of metamaterials, artificially structured composites that help control electromagnetic waves in unusual ways using plasmonic phenomena.

The diverse applications the group has derived from their plasmonics research is an example of the ingenuity of researchers approaching new and dynamic technologies that offer broad and unprecedented capabilities. The research has attracted a great deal of attention within the scientific community, industry and government agencies. Related plasmonics research offers applications for military and computer chip technologies, which could benefit from the higher frequencies and rapid data transfer rates that plasmons offer.

The team's research has been funded by the National Science Foundation and Clark School Corporate Partner BAE Systems.

Smolyaninov and Davis have published an article in the journal Science about their superlens microscope technology, titled "Magnifying Superlens in the Visible Frequency Range." The group and their colleagues from Purdue University will also soon publish a paper about their invisibility cloak research. A manuscript describing the invisibility cloak is available online at http://arxiv.org/abs/0709.2862.

About the A. James Clark School of Engineering
The Clark School of Engineering, situated on the rolling, 1,500-acre University of Maryland campus in College Park, Md., is one of the premier engineering schools in the U.S.

The Clark School's graduate programs are collectively the fastest rising in the nation. In U.S. News & World Report's annual rating of graduate programs, the school is 15th among public and private programs nationally, 9th among public programs nationally and first among public programs in the mid-Atlantic region. The School offers 13 graduate programs and 12 undergraduate programs, including degree and certification programs tailored for working professionals.

The school is home to one of the most vibrant research programs in the country. With major emphasis in key areas such as communications and networking, nanotechnology, bioengineering, reliability engineering, project management, intelligent transportation systems and space robotics, as well as electronic packaging and smart small systems and materials, the Clark School is leading the way toward the next generations of engineering advances.

Ted Knight | EurekAlert!
Further information:
http://www.eng.umd.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>