Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speedy Mic’s Photograph

20.12.2007
Flare found on ultra-fast rotating star puzzles astronomers

Using observations from ESO’s VLT, astronomers were able for the first time to reconstruct the site of a flare on a solar-like star located 150 light years away. The study of this young star, nicknamed ‘Speedy Mic’ because of its fast rotation, will help scientists better understand the youth of our Sun.

The astronomers [1] observed the star BO Microscopii [2] during two consecutive nights in October 2006, simultaneously with the UVES spectrograph on ESO’s Very Large Telescope and ESA’s XMM-Newton X-ray satellite.

Using a technique called ‘Doppler imaging’ [3], the astronomers reconstructed images of the surface of the star, detecting the presence of several spots. A few are near the visible pole, while most spots are asymmetrically distributed at mid-latitudes.

“The image we could secure of Speedy Mic is, given its distance, a real prowess, that allows us to localise for the first time ever the source of a flare and its surrounding,” says Uwe Wolter, lead author of the paper relating the discovery.

The X-ray observations indeed identified several flares, which are sudden and vast releases of energy. For one of them, the astronomers could pinpoint its origin on the surface of the star. The flare, lasting about 4 hours, was a hundred times more energetic than a large solar flare and considerably larger than solar coronal loops.

The surprising finding, the team says, was the location of the flare. Contrary to our Sun, the site of the observed flare does not correspond to the detected spots.

“Interestingly, the flare occurs on a rather inconspicuous portion of the star’s surface, away from the main concentration of activity in terms of dark spots,” explains Wolter.

Speedy Mic is a very young star: with an age of only about 30 million years, it is roughly 150 times younger than the Sun. “It is very likely that our young Sun was such a fast rotator as well,” says Wolter. “Studying Speedy Mic is thus like observing our own host star while still in its infancy and so, better understand how the eruptions on the young Sun affected the planets. These studies may also contribute to the understanding of current solar eruptions which can cause havoc in our telecommunications and power distributions.”

Notes
[1] The team is composed of U. Wolter, J. Robrade, and J. Schmitt (Hamburg Observatory, Germany), and J. Ness (Arizona State University, USA).
[2] BO Microscopii (or BO Mic and nicknamed ‘Speedy Mic’) is a young star with a mass about 90 % the mass of our Sun. It is located 150 light years away towards the Microscope constellation. Speedy Mic owns its name because of its very fast rotation. The object rotates 66 times as fast as our Sun, which results in much stronger magnetic fields than on the Sun.
[3] Speedy Mic is a star slightly smaller than the Sun and is about ten million times further away from us than the Sun is. Trying to see spots on its surface is thus as challenging as trying to directly obtain a photograph of the footsteps of Neil Armstrong on the Moon, and be able to see details in it. This is impossible to achieve even with the best telescopes: to obtain an image with such amount of details, you would need a telescope with a 400 km wide mirror!
Astronomers make therefore use of indirect imaging techniques, such as Doppler imaging, to achieve this incredible prowess. Doppler imaging makes use of the information contained in the slightly changing spectra observed as a star rotates. In this case, the astronomers obtained 142 spectra of the star with the UVES spectrograph on ESO’s VLT.

[4] Sunspots, which are cooler, but still very hot regions of the Sun’s surface, are known to be regions of intense magnetic activity.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-53-07.html

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>