Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot spot on Enceladus causes plumes

19.12.2007
Enceladus, the tiny satellite of Saturn, is colder than ice, but data gathered by the Cassini-Huygens Mission to Saturn and Titan has detected a hot spot that could mean there is life in the old moon after all. In fact, for researchers of the outer planets, Enceladus is so intellectually hot, it's smokin'.

The heat being generated on the moon's south pole at a hot spot is enough to eject plumes of ice and vapor above Enceladus. These plumes, according to William B. McKinnon, Ph.D., professor of earth and planetary sciences in Arts & Sciences at Washington University in St. Louis, are this moon's most intriguing feature.

"The plume particles are like smoke, ice smoke," McKinnon said. "If you were standing on Enceladus' surface you wouldn't even be able to see the plumes. The particles are just larger than the wavelength of light, about one-thousandths of a millimeter. Most icy bodies of this size are geologically inert, but this is a clear indication of geological activity. Cassini has found active venting of water vapor. This leads to scientifically intriguing speculations and questions."

One is: Is this active ice volcanism on Enceladus? If so, is it due to ice sublimating, in the manner of a comet, or to a different mechanism, like boiling water, as in Old Faithful at Yellowstone?

The biggest question: If there is water on Enceladus, is there life?

"I don't think so," McKinnon said. "The strongest piece of evidence against that is measurements made from Earth of the plume don't show any sodium. If the source of the plumes were fresh water like on Earth, the plumes would contain enough detectable sodium. Fresh water flows through rocks and on streambeds, and so it picks up bits of mineral chemistry. The emerging view is that there's not obvious evidence for a subterranean ocean in contact with rock, no boiling or venting."

McKinnon said that the leading model for the cause of the plumes on Enceladus is that the moon's tides cause its crust to ratchet or rub back and forth in a set of faults near the south pole. This action generates just enough heat to vaporize the ice that makes the plumes.

Cassini, which has been passing through the plumes of Enceladus, makes its next pass in March of 2008. It will go deeper into the plume and take more pictures of the moon's features, the venting area in the infrared, impact craters, cracks and fissures, and make better measurements of gases and vapors.

McKinnon presented "Cold Fire: The Geology and Geophysics of Enceladus," Dec. 10, 2007, at the Fall Meeting of the American Geophysical Union in San Francisco.

The mythological Enceladus is buried beneath Mount Etna and is responsible for the mountain's tremors and volcanism. The moon Enceladus is only 500 kilometers wide — roughly 300 miles wide, the distance between St. Louis and Chicago, and quite round for such a small body. Data from Cassini has revealed a rock-rich body, 55 to 60 percent rock by mass, with a surface of nearly pure water ice.

The temperature at the poles is some -220 degrees Celsius (C), but the hot spot is at least 100 degrees warmer. Enceladus is in a special relationship called dynamical resonance with another one of Saturn's moons, Dione. Every time Dione, in an exterior orbit around Saturn, circles Saturn, Enceladus goes around exactly twice. This resonance keeps Enceladus' orbit tidally pumped, maintaining an eccentric path that leads to a continuous squeezing under Saturn's gravity field.

This process makes a small part of the planet hot, relatively, for an icy satellite. It's the same mechanism that runs the tremendously hot silicate volcanism of Io and activates Europa, maintaining its ocean. Io and Europa are two of Jupiter's moons.

"You only have to get so hot to make ice active," McKinnon said. "It doesn't have to get tremendously hot like it does on Io. Ice volcanism requires an order of magnitude less energy for things to work out pretty well. The hot spots are -100 degrees C or possibly 'warmer'; the area around it is more than twice as cold. We still can't say how truly 'hot' the hot spots are. We'll probably learn this in March."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>