Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster X-ray interferometers due to single-photon interference

19.12.2007
By means of X-ray interferometers, lengths down to the mm range can be measured with a resolution of less than one nm. The low translation velocity of the interferometers, which made their use in practice more difficult, could now be increased by a factor of 100 by exploiting the temporal correlation of singly interfering X-ray photons.

X-ray interferometers can measure lengths in the mm range with sub-nm resolution, whereby the almost perfect crystal grid of high-purity silicon is used as a length scale. The dimensions of any sub-µm-structured samples are thereby compared with the lattice parameter of silicon (?0~0.543... nm) which has been determined very precisely within the scope of the project for the new definition of the Avogadro constant. For metrological applications in connection with scanning probe microscopes, such measurements are of great importance.

Up to now, a further spreading of this method had, however, been impeded by the low translation velocities of only 1 nm/s to 10 nm/s. They are due to the limited intensity of typical laboratory X-ray sources: the necessary filtering of the periodic interference signal leads to a reduction in contrast which, in a classic measurement, requires a slow translation of the interferometer.

In a quantum-mechanical sense, however, interference occurs also in a strongly "diluted" stream of X-ray photons: Regarded as a wave packet, even single photons follow in their temporal impact on the detector the same probability which, in the case of sufficiently intense X-ray light, leads to the continuous signal whose period one wants to determine. This well-known quantum-mechanical fact is now exploited for a specific purpose: if one protocols the times at which the single photons hit the detector, one can, by means of a subsequent Fourier transform of this time series, determine very precisely the frequency at which the lattice periods were passed. At constant velocity, it is then possible to reconstruct the path information, and one obtains the same information as with the classic measurement, but in a much shorter amount of time.

Thus, translation velocities of up to 1000 nm/s could be realised. This method will in future not only be used in further improved measuring arrangements for the determination of the lattice parameter of silicon, but also for other length measurements in nanotechnology.

Erika Schow | alfa
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>