Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversible data transfers from light to sound

17.12.2007
As a step towards designing tomorrow's super-fast optical communications networks, a Duke University-led research team has demonstrated a way to transfer encoded information from a laser beam to sound waves and then back to light waves again.

Swapping data between media like this would allow information to be captured and retained for very brief intervals. Data could be stored within pockets of acoustic vibration created when laser beams interact along a short strand of optical fiber, the team reported in the Dec. 14, 2007 issue of the journal Science.

The Duke experiments address a barrier to efforts at developing computer networks that can run on light instead of electrons. "The real gist of the work is how to create a memory for optical pulses," said Duke physics professor Daniel Gauthier, the report's corresponding author.

Computers in use now manipulate the flow of electrons to shunt the data they carry into memory. But light has proved to be stubbornly resistant to similar traffic controls. "We don't have random access memories for light the way electronic computers do," Gauthier said.

The new method, suggested by Gauthier's postdoctoral research associate Zhaoming Zhu, uses a phenomenon called "stimulated Brillouin scattering." Opposing laser beams passing though each other along an optical fiber create acoustic vibrations known as phonons within the glass.

"To efficiently create such acoustic waves, you have to have two laser beams of slightly different frequencies interacting with each other," Gauthier said.

In a series of experiments at Duke, Zhu found that if he encoded information onto one of those laser beams, the data could be imprinted on newly-created phonons. Such phonon sounds are much too high-pitched for humans to hear, Gauthier said.

Zhu, the Science report's first author, documented that phonons could retain the data for as long as 12 billionths of a second. The information could then be successfully re-transferred from sound to light again by shining a third laser beam through the fiber.

"While short by human standards, 12 billionths of a second is long in comparison to the time scales used in optical data transmission," said coauthor Robert Boyd, a professor of optics and physics at the University of Rochester's Institute of Optics.

While Zhu conducted the experiments, Gauthier and Boyd examined the findings' theoretical underpinnings. The work was funded by the Defense Advanced Research Projects Agency's Defense Sciences Office Slow-Light Program.

The new method works at room temperatures and at wavelengths of light compatible with optical fibers already used in telecommunications, giving it several advantages over competing techniques for manipulating light.

More work will be needed before this approach becomes workable in optical computation, Gauthier acknowledged. First, the power used for the write and read pulses is about 100 watts, "rather high for any type of telecommunications application," he said.

"The other issue is that we're only storing the data for about 10 nanoseconds," Gauthier added. "There may be a few applications where such short storage times would be okay. But, for many applications, you would like to store it for seconds."

In their report, the authors suggest other kinds of fiber optic materials that might yield better results.

"I'm hoping that other scientists around the world will come up with new ideas based on our work," Gauthier said. "The Duke team will also be pushing the state of the art in this field with our own ideas."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>