Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversible data transfers from light to sound

17.12.2007
As a step towards designing tomorrow's super-fast optical communications networks, a Duke University-led research team has demonstrated a way to transfer encoded information from a laser beam to sound waves and then back to light waves again.

Swapping data between media like this would allow information to be captured and retained for very brief intervals. Data could be stored within pockets of acoustic vibration created when laser beams interact along a short strand of optical fiber, the team reported in the Dec. 14, 2007 issue of the journal Science.

The Duke experiments address a barrier to efforts at developing computer networks that can run on light instead of electrons. "The real gist of the work is how to create a memory for optical pulses," said Duke physics professor Daniel Gauthier, the report's corresponding author.

Computers in use now manipulate the flow of electrons to shunt the data they carry into memory. But light has proved to be stubbornly resistant to similar traffic controls. "We don't have random access memories for light the way electronic computers do," Gauthier said.

The new method, suggested by Gauthier's postdoctoral research associate Zhaoming Zhu, uses a phenomenon called "stimulated Brillouin scattering." Opposing laser beams passing though each other along an optical fiber create acoustic vibrations known as phonons within the glass.

"To efficiently create such acoustic waves, you have to have two laser beams of slightly different frequencies interacting with each other," Gauthier said.

In a series of experiments at Duke, Zhu found that if he encoded information onto one of those laser beams, the data could be imprinted on newly-created phonons. Such phonon sounds are much too high-pitched for humans to hear, Gauthier said.

Zhu, the Science report's first author, documented that phonons could retain the data for as long as 12 billionths of a second. The information could then be successfully re-transferred from sound to light again by shining a third laser beam through the fiber.

"While short by human standards, 12 billionths of a second is long in comparison to the time scales used in optical data transmission," said coauthor Robert Boyd, a professor of optics and physics at the University of Rochester's Institute of Optics.

While Zhu conducted the experiments, Gauthier and Boyd examined the findings' theoretical underpinnings. The work was funded by the Defense Advanced Research Projects Agency's Defense Sciences Office Slow-Light Program.

The new method works at room temperatures and at wavelengths of light compatible with optical fibers already used in telecommunications, giving it several advantages over competing techniques for manipulating light.

More work will be needed before this approach becomes workable in optical computation, Gauthier acknowledged. First, the power used for the write and read pulses is about 100 watts, "rather high for any type of telecommunications application," he said.

"The other issue is that we're only storing the data for about 10 nanoseconds," Gauthier added. "There may be a few applications where such short storage times would be okay. But, for many applications, you would like to store it for seconds."

In their report, the authors suggest other kinds of fiber optic materials that might yield better results.

"I'm hoping that other scientists around the world will come up with new ideas based on our work," Gauthier said. "The Duke team will also be pushing the state of the art in this field with our own ideas."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Exploring the mysteries of supercooled water
01.03.2017 | American Institute of Physics

nachricht Optical generation of ultrasound via photoacoustic effect
01.03.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>