Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saturn's rings may be as old as solar system

17.12.2007
Rings may last for billions of years, according to new research

New observations by NASA's Cassini spacecraft indicate the rings of Saturn, once thought to have formed during the age of the dinosaurs, instead may have been created roughly 4.5 billion years ago when the solar system was still under construction.

Professor Larry Esposito, principal investigator for Cassini's Ultraviolet Imaging Spectrograph at CU-Boulder, said data from NASA's Voyager spacecraft in the 1970s and later NASA's Hubble Space Telescope had led scientists to believe Saturn's rings were relatively youthful and likely created by a comet that shattered a large moon, perhaps 100 million years ago.

But ring features seen by instruments on Cassini -- which arrived at Saturn in 2004 -- indicate the rings were not formed by a single cataclysmic event, he said. The ages of the different rings appear to vary significantly and the ring material is continually being recycled, Esposito said.

"The evidence is consistent with the picture that Saturn has had rings all through its history," said Esposito of CU-Boulder's Laboratory for Atmospheric and Space Physics. "We see extensive, rapid recycling of ring material, in which moons are continually shattered into ring particles, which then gather together and re-form moons."

Esposito and CU-Boulder colleague Miodrag Sremcevic presented their findings today in a news briefing at the fall meeting of the American Geophysical Union held Dec. 10 to Dec. 14 in San Francisco.

"We have discovered that the rings were probably not created just yesterday in cosmic time, and in this scenario it is not just luck that we are seeing planetary rings now," said Esposito. "They probably were always around but continually changing, and they will be around for many billions of years."

Scientists had previously believed rings as old as Saturn itself should be darker due to ongoing pollution by the "infall" of meteoric dust, leaving telltale spectral signatures, Esposito said. But the new Cassini observations indicate the churning mass of ice and rock within Saturn's gigantic ring system is likely much larger than previously estimated, helping to explain why the rings appear relatively bright to ground-based telescopes and spacecraft.

"The more mass there is in the rings, the more raw material there is for recycling, which essentially spreads this cosmic pollution around," he said. "If this pollution is being shared by a much larger volume of ring material, it becomes diluted and helps explain why the rings appear brighter and more pristine than we would have expected."

Esposito, who discovered Saturn's faint F ring in 1979 using data from NASA's Pioneer 11 spacecraft, said an upcoming paper by him and colleagues in the journal Icarus supports the theory that Saturn's ring material is being continually recycled. Observing the flickering of starlight passing through the rings in a process known as stellar occultation, the researchers discovered 13 objects in the F ring ranging in size from 30 yards to six miles across.

Since most of the objects were translucent -- indicating at least some starlight was passing through them -- the researchers concluded they probably are temporary clumps of icy boulders that are continually collecting and disbanding due to the competing processes of shattering and coming together again. The team tagged the clumpy moonlets with cat names like "Mittens" and "Fluffy" because they appear to come and go unexpectedly over time and have multiple lives, said Esposito.

Esposito stressed that in the future Saturn's rings won't be the same we see today, likening them to great cities around the world like San Francisco, Berlin or Beijing. "While the cities themselves will go on for centuries or millennia, the faces of people on the streets will always be changing due to continual birth and aging of new citizens."

Larry Esposito | alfa
Further information:
http://www.colorado.edu/news/reports/space/

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>